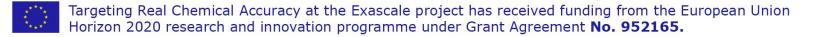


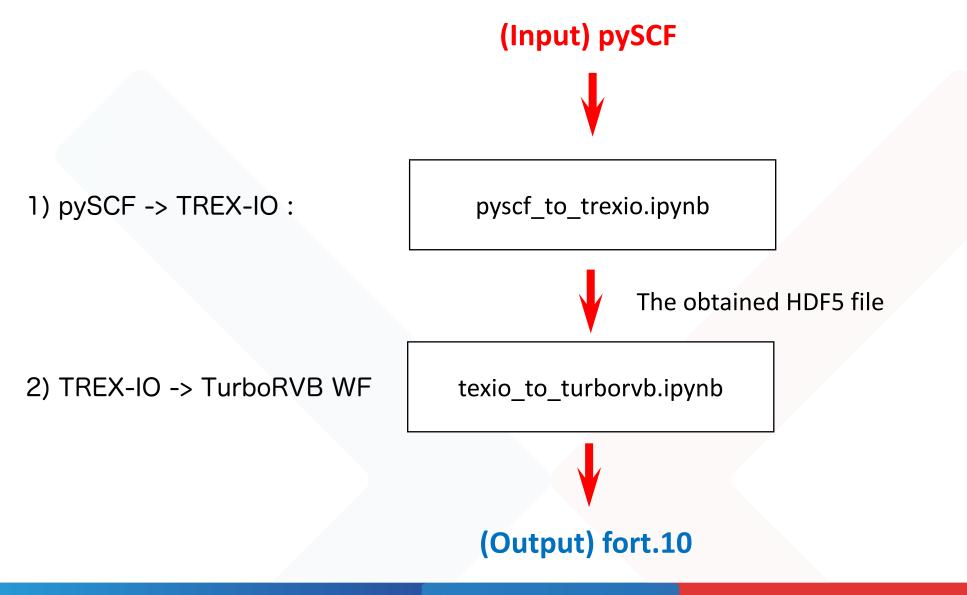
TREX-IO: hands-on session

Kosuke Nakano

- SISSA (International School for Advanced Studies/Italy)
- JAIST (Japan Advanced Institute of Science and Technology/Japan)



Targeting Real Chemical Accuracy at the Exascale project has received funding from the European Union Horizon 2020 research and innovation programme under Grant Agreement **No. 952165.**


Today's topics:

- PySCF -> TREX-IO HDF5
- TREX-IO HDF5 -> TurboRVB WF

A workflow for pySCF -> TurboRVB

See pyscf_to_trexio.ipynb.

TODO list:

- Pseudo potential Information (No ECP info. is stored).
- shell_prim_factor implementation (for the time being, it is set 1 for all.)

Would someone help me during this hackathon??

See. texio_to_turborvb.ipynb.

TODO list:

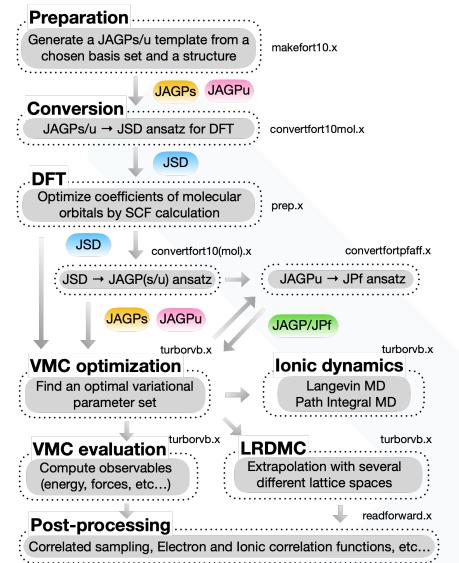
- Implementation as a "tool", i.e., it is a jupyter notebook now.

How trexio.py is packaged?? Could we talk about this topic during the hackathon?

- Contracted basis sets with same exponents.
- Pseudo potential Information (No ECP info. is stored)

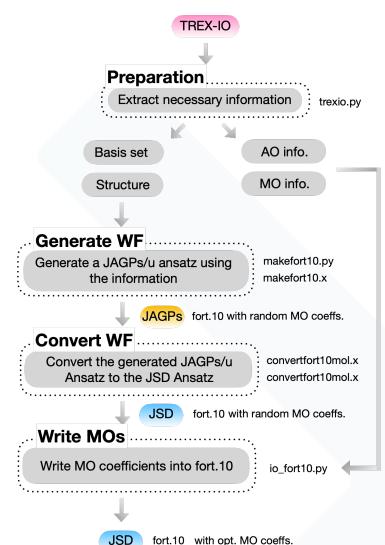
QMC engines (DFT, VMC-optimization, VMC, LRDMC)

K. Nakano, C. Attaccalite, M. Barborini, L. Capriotti, M. Casula, E. Coccia, M. Dagrada, Y. Luo, G. Mazzola, A. Zen, and S. Sorella, *J. Chem. Phys.* <u>152</u>, 204121 (2020)



Python wrappers.

K. Nakano and collaborators, in preparation (2022)


A typical workflow in TurboRVB

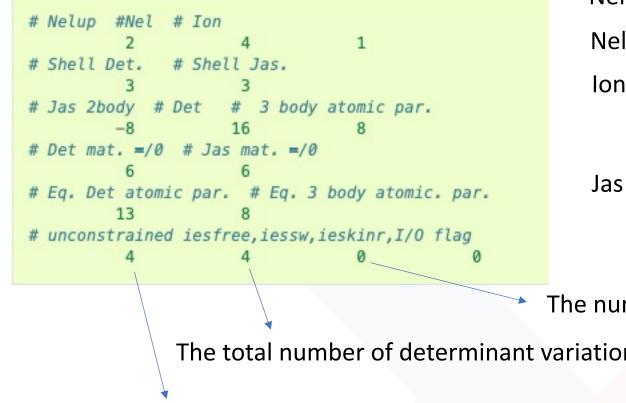
- = Workflow =
 - 1. Prepare a structure and basis set makefort10.x
 - 2. DFT Construct a reasonable initial WF! prep.x

- 3. VMC-opt Optimize the wavefunction turborvb.x
- 4. VMC Do a VMC run. turborvb.x
 5. LRDMC LRDMC with the optimized WF. turborvb.x

First, the converter generates a TurboRVB WF file using only basis set and structure information stored in a TREX-IO file.

Then, the converter writes the MO information stored in a TREX-IO file into the generated WF file.

This is because of the complication of the TurboRVB WF format.


All the information (except for pseudo potential info.) is included in a single file, named "fort.10"

```
# fort.10 of the C2-dimer (the Pfaffian ansatz with the Filippi pseudo potential.)
# Nelup #Nel # Ion
                   -8
                                2
# Shell Det.
              # Shell Jas.
        50
                    43
# Jas 2body # Det # 3 body atomic par.
                   1482
        -22
                                 42
# Det mat. =/0 # Jas mat. =/0
        120
                   8370
# Eq. Det atomic par. # Eq. 3 body atomic. par.
        741
                     21
# unconstrained iesfree,iessw,ieskinr,I/0 flag
        8370
                     120
                                               0
                                   6
# Ion coordinates
4.000000000000000
                                               0.00000000000000E+000
                        6.000000000000000
0.00000000000000E+000 -1.14999954166875
4.0000000000000000
                                               0.00000000000000E+000
                        6.0000000000000000
0.0000000000000E+000 1.14999954166875
# Constraints for forces: ion - coordinate
                    1
                                2
                                3
                    2
                                2
                    2
                                3
           Parameters Jastrow two body
        -1 0.342214663461764
...
```

"fort.10" can be generated by "makefort10.x" (see later).

Header:

Nelup: The number of spin up electrons in the system. Nel: The total number of electrons in the system. Ion: The number of nuclei in the system.

Jas 2body: Onebody and Twobody Jastrow types

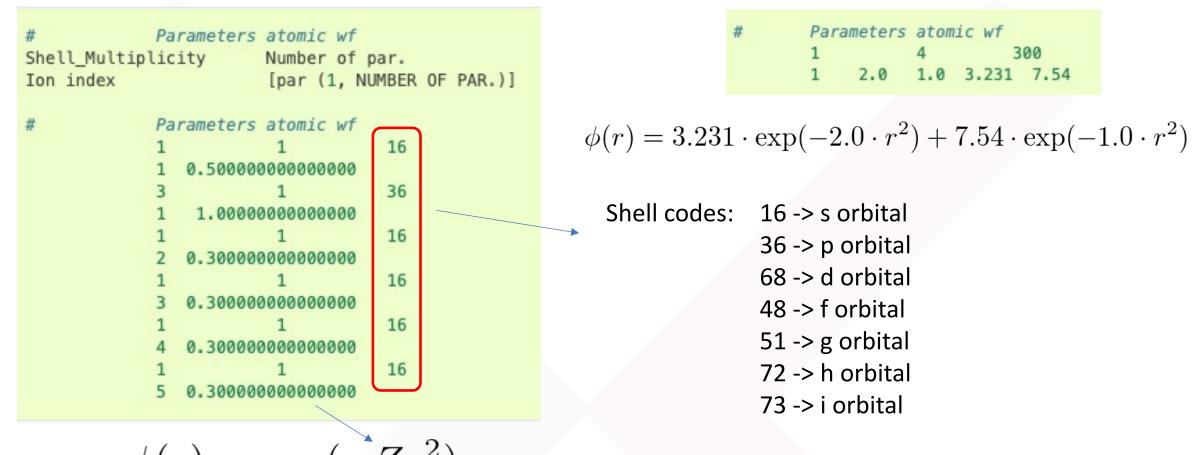
The number of atomic forces.

The total number of determinant variational param.

The total number of Jastrow variational param.

Coordinates:

<pre># Ion coordinates</pre>			
N1 Z1	x1	y1	z1
N2 Z2	x2	y2	z2
Nn Zn	xn	yn	zn


- N: Atomic number

- Pseudo potential case N != Z
- Z: The number of valence electrons
- xn, yn, zn : atomic positions (Bohr)

If you want to use a H-pseudo potential, please put N=1.0, Z=1.00001 (dummy).

Basis set for the determinant part:

Wavefunction (makefort.10.x)

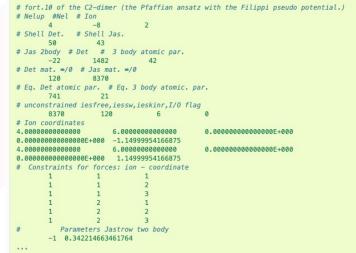
Input: makefort10.input

Binary: makefort10.x

Output:fort10_new

makefort10.x is a tool for generating JAGP WF(fort.10) from makefort10.input.

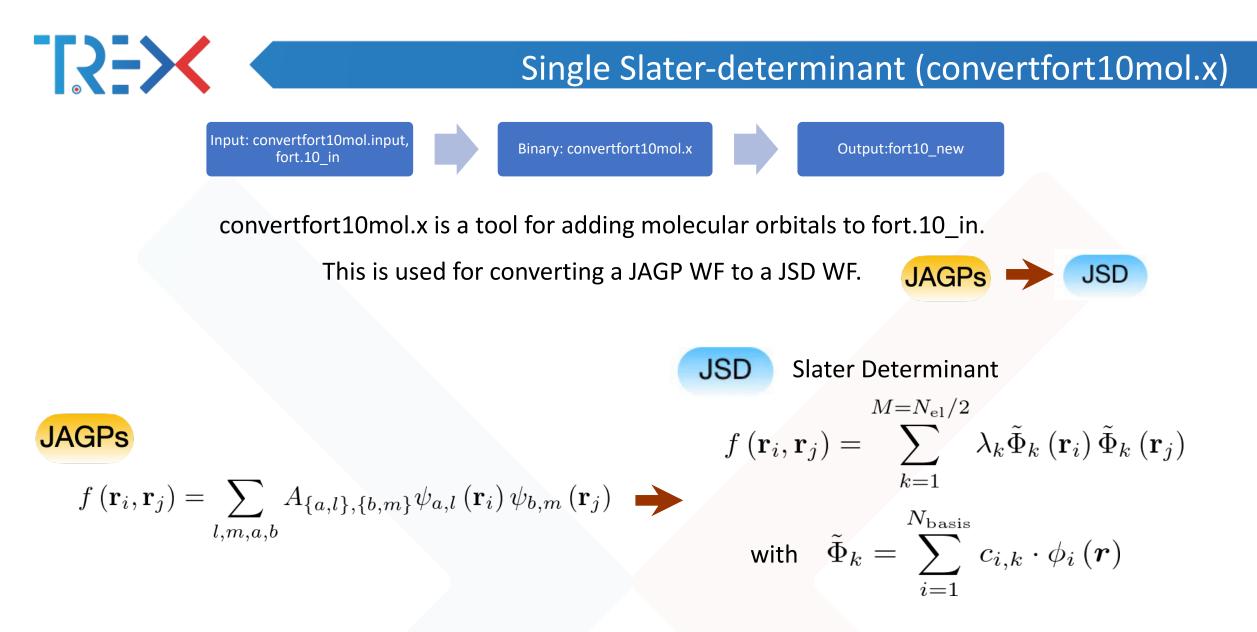
N1 Z1	x1	y1	z1
N2 Z2	x2	y2	z2
Nn Zn	xn	yn	zn


Structural information.

#	Parameters		atomic wf		
	1		4	300	
	1	2.0	1.0	3.231	7.54

Basis-set information.

posunits='crystal' natoms=2 ntyp=1 complexfort10=.false. pbcfort10=.true. !yes_pfaff=.true. celldm(1)=4.648726266579395 celldm(2)=1.0 celldm(3)=4.065040650406504 celldm(4)=1.5707963267948966 celldm(5)=1.5707963267948966 celldm(6)=2.0943951023931953 yes tilted=.true. nxyz(1)=3nxyz(2)=3nxyz(3)=1phase(1)=0.0 phase(2)=0.0 phase(3)=0.0 phasedo(1)=0.0 phasedo(2)=0.0 phasedo(3)=0.0


makefort10.x

Wavefunction file (fort.10)

makefort10.input file

DFT (prep.x) works only with molecular orbitals!! So, one should convert a WF from the JsAGPs to JSD.

Molecular orbitals (100000): In fort.10, 1000000 indicates a molecular orbital.

	ys 1, the num		onents, 10000	0		
<pre>#index of basis [1,2,]</pre>						
#coef	ficients for ba	sis [1,2,	•]			
1	180 1	000000				
1	1	2	3	4	5	
6	7	8	9	10	11	
12	13	14	15	16	17	
18	19	20	21	22	23	
24	25	26	27	28	29	
30	31	32	33	34	35	
36	37	38	39	40	41	
42	43	44	45	46	47	
48	49	50	51	52	53	
54	55	56	57	58	59	
60	61	62	63	64	65	
66	67	68	69	70	71	
72	73	74	75	76	77	
78	79	80	81	82	83	
84	85	86	87	88	89	
90 0.438271164894104 -4.608166217803955E-002					/	
0.189550578594208 7.299757003784180E-002 -0.129178702831268						
-0.241831779479980 -7.793867588043213E-002 -0.143670558929443					9443	
-0.181271851062775 -0.265352427959442 0.374841809272766						
E 0701E0E7E0E7000E 000 0 006640000E746070 0 401764400000E06						

$$\Phi_{k} = \sum_{i=1}^{N_{\text{basis}}} c_{i,k} \cdot \phi_{i}\left(\boldsymbol{r}\right)$$

These coefficients are replaced with the values read from a TREX-IO file using a method implemented in fort10.py!

io fort10.turborvb basis set list.update *molecular_orbitals(mo_coefficient_turbo)*

Molecular orbitals can be added by "convertfort10mol.x". DFT works only with molecular orbitals.

Follow us in company/trex-eu 🕑 @trex_eu

Targeting Real Chemical Accuracy at the Exascale project has received funding from the European Union Horizon 2020 research and innovation programme under Grant Agreement No. 952165.

