
QMCkl
Anthony Scemama, Vijay Gopal Chilkuri,
William Jalby

1/03/2022

Lab. Chimie et Physique Quantiques, IRSAMC, UPS/CNRS, Toulouse

(France)

Introduction

Application Programming Interface (API) for main algorithms of QMC
Pedagogical (WP1) and high-performance (WP3) implementations
API should have enough abstraction to let HPC implementations handle internal
data structures, memory allocations, numerical precision, GPUs . . .
API is expressed in C for maximum compatibility with codes
Low level functions: linear algebra, small kernels (a.U.v)
High-level functions: domain-specific
In HPC implementation, everything is allowed as long as the HPC function returns
the same value as the pedagogical one within the specified numerical precision.

Pedagogical implementation

System functions in C (memory allocation, thread safety, etc)
Computational kernels in Fortran for readability
The API is C-compatible: QMCkl appears like a C library =⇒ can be used in all
other languages
A lot of documentation

Literate programming

Literate programming with org-mode:
Comments are more important than code
Can add graphics, LATEXformulas, tables, etc
Documentation always synchronized with the code
Some routines can be generated by embedded scripts
Web site auto-generated when code is pushed
Most of the the first report was auto-generated from the documentation

Instead of writing comments documenting code, we write code illustrating
documentation.

Literate programming with org-mode

Generated code

Generated web site

Dependency graph

The quantities of interest are organized in a dependency graph:

The user asks for v . w and u2 were computed.
If the user asks for t, v is re-used and only u1 is
computed.
The sub-trees are independent, so they can be
computed in parallel

Dependency graph

Each quantity is expressed as a function of other quantities:

χi (r) = Pη(i)(r)Rθ(i)(r)

Here, χ depends on P and R.
The context is a data structure containing the state of the library (equivalent to
global variables).
It contains all the computed quantities that may be re-used
It is passed to all the functions
The date is an integer which increments each time the electron coordinates change.
The quantities are recomputed only if their date is older than the current date, like
in a Makefile

How a quantity is computed

qmckl_exit_code provide_chi(qmckl_context* ctx) {
qmckl_exit_code rc;

if (ctx->date > ctx->date_chi) {

rc = provide_p(ctx); // asserts that ctx->p is computed
if (rc != QMCKL_SUCCESS) return rc;

rc = provide_r(ctx); // asserts that ctx->r is computed
if (rc != QMCKL_SUCCESS) return rc;

ctx->chi = compute_chi(ctx->p, ctx->r);
ctx->chi_date = ctx->date;

}
return QMCKL_SUCCESS;

}

What happens when a quantity is asked for

qmckl_exit_code qmckl_get_chi(qmckl_context ctx, double* chi, int64_t size_max) {
// First, check context is valid, and that size_max is large enough. Then,

qmckl_exit_code rc = provide_chi(ctx);
if (rc != QMCKL_SUCCESS) return rc;

memcpy(chi, ctx->chi, ctx->chi_size);
return QMCKL_SUCCESS;

}

Note: the memcpy can be avoided using qmckl_get_chi_inplace, to be used with
caution.

Checking errors

All QMCkl functions return an error code. A convenient way to handle errors is to write
an error-checking function that displays the error in text format and exits the program.

subroutine qmckl_check_error(rc, message)
use qmckl
implicit none
integer(qmckl_exit_code), intent(in) :: rc
character(len=*) , intent(in) :: message
character(len=128) :: str_buffer

if (rc /= QMCKL_SUCCESS) then
print *, message
call qmckl_string_of_error(rc, str_buffer)
print *, str_buffer
call exit(rc)

end if
end subroutine qmckl_check_error

Interacting with the library

The user gives input parameters to the library to initialize the context
The arrays can be given one by one, but the easy way is to read a TREXIO file:

use qmckl
integer(qmckl_context) :: qmckl_ctx
integer(qmckl_exit_code) :: rc
double precision :: qmckl_ao_vgl(ao_num,5,elec_num, walk_num)

qmckl_ctx = qmckl_context_create()
rc = qmckl_trexio_read(qmckl_ctx, trexio_filename, len(trim(trexio_filename)))
call qmckl_check_error(rc, 'Read TREXIO')

rc = qmckl_set_electron_walk_num(qmckl_ctx, walk_num)
call qmckl_check_error(rc, 'Set walk_num'))

rc = qmckl_set_electron_coord(qmckl_ctx, 'N', elec_coord, size(elec_coord)) ! Increments date
call qmckl_check_error(rc, 'Set elec_coord'))

rc = qmckl_get_ao_basis_ao_vgl(qmckl_ctx, qmckl_ao_vgl, size(qmckl_ao_vgl)) ! Commputes AOs
call qmckl_check_error(rc, 'Get ao_vgl'))

Example: Computing an atomic orbital on a grid

$ ao_grid <trexio_file> <AO_id> <point_num>

Start by fetching the command-line arguments:

if (iargc() /= 3) then
print *, 'Syntax: ao_grid <trexio_file> <AO_id> <point_num>'
call exit(-1)

end if
call getarg(1, trexio_filename)
call getarg(2, str_buffer)
read(str_buffer, *) ao_id
call getarg(3, str_buffer)
read(str_buffer, *) point_num_x

if (point_num_x < 0 .or. point_num_x > 300) then
print *, 'Error: 0 < point_num < 300'
call exit(-1)

end if

Example: Computing an atomic orbital on a grid

Create the QMCkl context and initialize it with the wave function present in the
TREXIO file:

qmckl_ctx = qmckl_context_create()
rc = qmckl_trexio_read(qmckl_ctx, trexio_filename, 1_8*len(trim(trexio_filename)))
call qmckl_check_error(rc, 'Read TREXIO')

We need to check that ao_id is in the range, so we get the total number of AOs from
QMCkl:

rc = qmckl_get_ao_basis_ao_num(qmckl_ctx, ao_num)
call qmckl_check_error(rc, 'Getting ao_num')

if (ao_id < 0 .or. ao_id > ao_num) then
print *, 'Error: 0 < ao_id < ', ao_num
call exit(-1)

end if

Example: Computing an atomic orbital on a grid

Compute the limits of the box. For that, we first need to ask QMCkl the coordinates of
nuclei.

rc = qmckl_get_nucleus_num(qmckl_ctx, nucl_num)
call qmckl_check_error(rc, 'Get nucleus num')

allocate(nucl_coord(3, nucl_num))
rc = qmckl_get_nucleus_coord(qmckl_ctx, 'N', nucl_coord, 3_8*nucl_num)
call qmckl_check_error(rc, 'Get nucleus coord')

We now compute the coordinates of opposite points of the box:

rmin(1) = minval(nucl_coord(1,:)) - 5.d0
rmin(2) = minval(nucl_coord(2,:)) - 5.d0
rmin(3) = minval(nucl_coord(3,:)) - 5.d0

rmax(1) = maxval(nucl_coord(1,:)) + 5.d0
rmax(2) = maxval(nucl_coord(2,:)) + 5.d0
rmax(3) = maxval(nucl_coord(3,:)) + 5.d0

dr(1:3) = (rmax(1:3) - rmin(1:3)) / dble(point_num_x-1)

Example: Computing an atomic orbital on a grid

We produce the list of point coordinates where the AO will be evaluated:

point_num = point_num_x**3
allocate(points(point_num, 3))
ipoint=0
z = rmin(3)
do k=1,point_num_x

y = rmin(2)
do j=1,point_num_x

x = rmin(1)
do i=1,point_num_x

ipoint = ipoint+1
points(ipoint,1) = x
points(ipoint,2) = y
points(ipoint,3) = z
x = x + dr(1)

end do
y = y + dr(2)

end do
z = z + dr(3)

end do

Example: Computing an atomic orbital on a grid

We give the points to QMCkl:

rc = qmckl_set_point(qmckl_ctx, 'T', points, point_num)
call qmckl_check_error(rc, 'Setting points')

We allocate the space required to retrieve the values, gradients and Laplacian of all
AOs, and ask the data to QMCkl:

allocate(ao_vgl(ao_num, 5, point_num))
rc = qmckl_get_ao_basis_ao_vgl(qmckl_ctx, ao_vgl, ao_num*5_8*point_num)
call qmckl_check_error(rc, 'Setting points')

We finally print the value of the AO:

do ipoint=1, point_num
print '(3(F16.10,X),E20.10)', points(ipoint, 1:3), ao_vgl(ao_id,1,ipoint)

end do

Single node parallelism

Loop-based: Splits loops in m chunks and distributes chunks in different threads.

!$OMP PARALLEL DO
do i=1,N
...
end do
!$OMP END PARALLEL DO

Advantages
Very low scheduling overhead
Control of memory locality
Easy to write and to think about

Difficulties
Not optimal for inhomogeneous workloads
Limited to the scope of the loop

Single node parallelism

Task based Splits work to do into independent tasks, adds them to a queue and lets the
threads perform these tasks

void provide_chi(qmckl_context* ctx) {
if (ctx->date > ctx->date_chi) {

#pragma omp task
provide_p(ctx);
#pragma omp task
provide_r(ctx);
#pragma omp taskwait
ctx->chi = compute_chi(ctx->p, ctx->r);
ctx->chi_date = ctx->date;

}
}

Advantages
Better load balancing
Tasks can be distributed on CPUs
and GPUs
Dependencies between tasks can be
expressed

Difficulties
Scheduling tasks requires some CPU
power =⇒ tasks need enough work
to do

Tiled arrays

Usual storage: double precision :: A(8,8)

Tiled arrays

Tiled storage: double precision :: A(4,4,4,4)

Tiled arrays

Advantages
Much Better locality in memory: sizes calibrated to cache sizes
Performance of matrix multiplication is constant
Fast transposition
Blocks can be directly sent to GPUs: no problem with leading dimension
Computation time of tasks is easy to estimate

Disadvantages
Code more difficult to read/write: more nested loops
Mapping between math and code is not simple
Random access is very inconvenient
Not naturally adapted to external libraries and codes

Low-level functions

In QMC, we manipulate small matrices
Compilers with -O3 usually generate efficient code for large data sets
Optimized BLAS libraries work with 2D arrays, which is not necessarily the most
efficient pattern
Matrices in QMCkl will be internally tiled: needs efficient linear algebra for small
(sub-)matrices
We implement low-level functions using x86 or ARM assembly:

Performance is independent of the compiler
Implementation is specific to tiled arrays

One generic kernel produces multiple assembly versions with a code generator

Implemented functionalities

Pedagogical only
MOs
Potential (ee, eN, NN)
Inverse Slater matrix

Optimized high-level
AOs
Jastrow
Sherman Morrison
Adjugate : B = adj(A) = det(A)A−1

Optimized low-level functions for tildes matrices
Matrix multiplication: heavily used in Jastrow
Rank-k update: necessary for Sherman-Morrison
Matrix-vector multiplication:
u†.A.v : necessary for Ψ =

∑
ij CijD

↑
i D
↓
j

Jastrow factor

Jeen(r,R) =

Nnucl∑
α=1

Nelec∑
i=1

i−1∑
j=1

Nnord∑
p=2

p−1∑
k=0

p−k−2δk,0∑
l=0

clkpα (rij)
k
[
(Riα)l + (Rjα)l

]
(Riα Rjα)(p−k−l)/2

can be rewritten as

Jeen(r,R) =

Nnord∑
p=2

p−1∑
k=0

p−k−2δk,0∑
l=0

Nnucl∑
α=1

clkpα

Nelec∑
i=1

R̄i ,α,(p−k−l)/2 P̄i ,α,k,(p−k+l)/2 (↓ complexity)

with

P̄i ,α,k,l =

Nelec∑
j=1

r̄i ,j ,k R̄j ,α,l . (GEMM)

Jastrow factor

∇imJeen(r,R) =

Nnord∑
p=2

p−1∑
k=0

p−k−2δk,0∑
l=0

Nnucl∑
α=1

clkpα

Nelec∑
i=1

Ḡi ,m,α,(p−k−l)/2 P̄i ,α,k,(p−k+l)/2 +

Ḡi ,m,α,(p−k+l)/2 P̄i ,α,k,(p−k−l)/2 + R̄i ,α,(p−k−l)/2 Q̄i ,m,α,k,(p−k+l)/2 +

R̄i ,α,(p−k+l)/2 Q̄i ,m,α,k,(p−k−l)/2 + δm,4
(

Ḡi ,1,α,(p−k+l)/2 Q̄i ,1,α,k,(p−k−l)/2 + Ḡi ,2,α,(p−k+l)/2 Q̄i ,2,α,k,(p−k−l)/2 +

Ḡi ,3,α,(p−k+l)/2 Q̄i ,3,α,k,(p−k−l)/2 + Ḡi ,1,α,(p−k−l)/2 Q̄i ,1,α,k,(p−k+l)/2 +

Ḡi ,2,α,(p−k−l)/2 Q̄i ,2,α,k,(p−k+l)/2 + Ḡi ,3,α,(p−k−l)/2 Q̄i ,3,α,k,(p−k+l)/2
)

with

Ḡi ,m,α,l =
∂ (Riα)l

∂ri
, ḡi ,m,j ,k =

∂ (rij)
k

∂ri
, and Q̄i ,m,α,k,l =

Nelec∑
j=1

ḡi ,m,j ,k R̄j ,α,l

Jastrow factor

AOs

Rs(r) = Ns |r − RA|ns
Nprim∑
k=1

aks fks exp (−γks |r − RA|p) .

χi (r) =Mi Pη(i)(r)Rθ(i)(r)

Rθ(i)(r) : Radial part

For each nucleus, beyond a given e-N distance all exponentials are zero
We call the exp function only if the argument is small enough:
γks |r − RA|2 ≤ − log

(
10−12)

The same radial part is reused for multiple AOs (px , py , pz)

AOs

Rs(r) = Ns |r − RA|ns
Nprim∑
k=1

aks fks exp (−γks |r − RA|p) .

χi (r) =Mi Pη(i)(r)Rθ(i)(r)

Pη(i)(r) : Polynomial part

For each nucleus, we know the max angular momentum lmax

We compute all the powers of x , y , z up to lmax by successive multiplications, and
their 1st and 2nd derivatives
These values are re-used for all AOs

AOs

Rs(r) = Ns |r − RA|ns
Nprim∑
k=1

aks fks exp (−γks |r − RA|p) .

χi (r) =Mi Pη(i)(r)Rθ(i)(r)

Combining R and P

Very low arithmetic intensity
P and R are computed together for each atom (P) and each shell (R) to reduce
memory operations

AOs

Rs(r) = Ns |r − RA|ns
Nprim∑
k=1

aks fks exp (−γks |r − RA|p) .

Work in progress
Sort arrays of exponents γks in increasing order per atom. Identify duplicates that
can occur between shells. We know that after indice kmax all exponents are zero,
so we can vectorize the computation of all exponentials centered on A.
Express the coefficients in the generally contracted format (as in MOLCAS):

γ =


0.158
0.502
1.792
7.903
52.56

 ek = eγk |r−RA|2 A =


0.0 0.0 1.0
0.0 1.0 0.0

0.852933 0.0 0.0
0.189684 0.0 0.0
0.025374 0.0 0.0

 R = A†e

Next steps

Introduce low-level functions
Introduce tiled arrays
AOs into sparse format
AOs in spherical coordinates
Sparse AO → MO transformation
Python interface for prototyping
Multi-determinant wave functions

To be discussed

Pseudopotentials
Should we pre-compute 〈Ylm|φ(r)〉 of the determinantal component and store it in
TREXIO?
I have no experience in programming pseudos with quadratures: I don’t know how
to do it efficiently

Periodic systems
I have no experience with periodic systems. What changes between isolated system
and periodic?

Possible strategy
Write a latex file with all formulas and detailed explanations
It is the most difficult and time-consuming part of writing code in QMCkl. Writing
code is faster than writing documentation.

