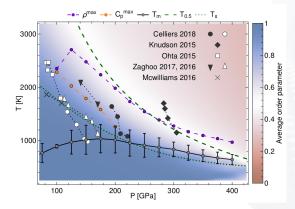


TREX Hackathon II

Matthias Rupp, Thomas Bischoff

03/03/2022



Targeting Real Chemical Accuracy at the Exascale project has received funding from the European Union Horizoon 2020 research and innovation programme under Grant Agreement **No. 952165.**

Motivation

Phase diagram of hydrogen under pressure:

No consensus in the literature yet :

Cheng, Mazzola, Pickard, Ceriotti, Nature 585, 2020 Tirelli, Tenti, Nakano, Sorella, arXiv 2021

 \rightarrow Solve this question using QMC and ML !

ML techniques

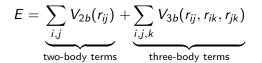
Direct learning:

 $f_{ML}(QMC)$

very accurate/heavy very cheap & not data efficient

Δ -learning using a DFT baseline:

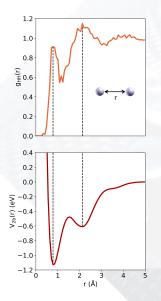
Δ -learning using a UFP baseline:


QMC

very accurate/heavy very cheap

+ $\Delta_{ML}(QMC - UFP)$ very cheap & data efficient

Many-body expansion of the energy:

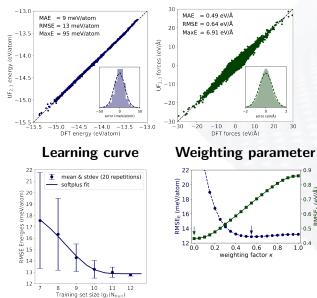

B-Spline basis for potential terms:

$$V(r)=\sum_n c_n B_n(r)$$

Advantages:

ightarrow fast to evaluate

- \rightarrow intuitive physical interpretation
- \rightarrow robust against holes in the dataset



Ultrafast potentials (UFPs) as baseline

eV/A

ZMSE

Prediction of energies and forces

 Δ - learning

Options for Δ - **learning** :

	linear	kernel	neural
	model	model	networks
interpretability	++	+	
data efficiency	++	+	
cost (of training)	++	+	
achievable accuracy	-	++	++