the protonated water hexamer from **Quantum Monte** Carlo

Matteo Peria

IMPMC, Sorbonne Université and CNRS

- Protonated water hexamer
- DFT vs QMC
- Machine Learning
- DFT vs ML(DFT)
- QMC vs ML(QMC)
- Perspectives

Proton transfer in the protonated water hexamer

RDF DFT vs QMC

Symmetrized RDF $O_{(1,2)}$ -H⁺ from classic MD + **DFT** at different T

RDF O_1 - O_2 from classic MD + **DFT** at different T

Symmetrized RDF $O_{(1,2)}$ -H⁺ from classic MD + **QMC** at different T

RDF DFT vs QMC (OH+ RDF differences)

Symmetrized RDF $O_{(1, 2)}$ -H⁺ from classic MD at **250K** (QMC vs DFT)

Symmetrized RDF $O_{(1, 2)}$ -H⁺ from classic MD at **100K** (QMC vs DFT)

Machine Learning the protonated water hexamer

Machine Learning

- FCHL19 representation (Local atomic environments)
- Training set extracted from MD configurations by farthest point sampling
- Operator Quantum Machine Learning (Kernel Ridge Regression like, with summation of local Gaussian kernel)

DFT vs ML(DFT) in OH+ RDF

7

QMC vs ML(QMC) in OH+ RDF

Symmetrized RDF $O_{(1,2)}$ -H⁺ from classic MD at **200K** (QMC vs ML)

Symmetrized RDF O_(1,2)-H⁺ from classic MD at **250K** (QMC vs ML)

Decrease QMC error bars

on training set configurations (<0.004 Ha/au)

• Exploit quantum simulations, which are able to "explore more" the shape of the barrier