=<

Targeting Real chemical accuracy at the EXascale

Exascale algorithms

Anthony Scemama

03/03/2022

Lab. Chimie et Physique Quantiques, IRSAMC, UPS/CNRS, Toulouse

(France)

Targeting Real Chemical Accuracy at the Exascale project has received funding from the European Union
Horizoon 2020 research and innovation programme under Grant Agreement No. 952165.

R T

Difficulties at the Exascale

TR=X<

HPC Grid/Cloud

Reliable network Internet network

Very low latency Very high latency
Homogeneous hardware Heterogeneous hardware
Network topology is known Network topology unknown
Tightly-coupled parallelism Embarrasingly parallel

The hardware is assumed reliable Hardware is unreliable

Efficient for synchronous applications Asynchronous

m When a single MPI process crashes, the whole simulation is killed

m Failure is inexistent in MPI design

r2 _>< From petascale to exascale
@ -

m Only the compute peak performance makes a 1000x
m Heterogeneous hardware (GPUs)

m Latencies are problematic (network, GPU)

m |f we normalize to compute speed, everything becomes slow

Possible solution
Grid/Cloud algorithms can be good candidates for exascale

TR=XX

QMC, cloud and HPC

gmc gmc gmc gmc gmc gmc gmc gmc

Forwarder Forwarder

Compute \ Compute

Node Node

/

Compute \‘i\ V/ Silrvder

Node HK_“ - 4 RS
Forwarder i i [6

Y

gmc gmc

Data server /' q gmc

Forwarder aqmc amc

TR=><

CALMIP

TR=><

2000 : 1 : : : 1 :

1800

1600

1400

1200

1000

Nb blocks

800 171 vM, 1 core B

LAL
600 —()

1VM, 16 cores
400 (IPHC) |

200]
0 / ! 1 1 |

0 50 100 150 200 250 300 350 400
Time (seconds)

TR=><

2000 : 1 : : : 1 :

1800

1600

1400

1200

1000

4 nodes, 80 cores
- (CALMIP)
800 1VM, 1 core

(LAL)

Nb blocks

600
1VM, 16 cores
400 (IPHC)

200

0 50 100 150 200 250 300 350 400
Time (seconds)

TR=><

2000 : 1 : : : 1 :

1800
Network
failure .

1600

1400

1200

1000

4 nodes, 80 cores
- (CALMIP)
800 1VM, 1 core

(LAL)

Nb blocks

600
1VM, 16 cores
400 (IPHC)

200

0 50 100 150 200 250 300 350 400
Time (seconds)

TR=><

2000 : 1 : : : 1 :

Network

recovery
Network
failure

1800

1600

1400

1200

1000

4 nodes, 80 cores
- (CALMIP)
800 1VM, 1 core

(LAL)

Nb blocks

600
1VM, 16 cores
400 (IPHC)

200

0 50 100 150 200 250 300 350 400

Time (seconds)

TQ-'X Can we do traditional quantum chemistry with a Grid?

Parallel Computing 2.2.4.7 Ad Hoc Grid

4 An ad hoc grid topology typically arises in computing environments that were
not purpose-built to function as a single computer. The nodes in the grid are
loosely coupled, as illustrated in Figure 2.14; a node may be administratively
independent of the other nodes and may be distant as well, perhaps even
connected over the Internet. The field of grid computing concerns itself with
authentication, resource scheduling, data movement, and loosely-coupled
computation in such environments. A'grid network’s performance, however,
is too low (the bisection width is too small and the latency too large) to be
of direct interest for the quantum chemistry applications discussed in this
book.

Quantum Chemistry

Curtis L. Janssen Ida M. B. Nielsen

TR

Example of Quantum Chemistry on a grid: Quantum Package

MPMD : Multiple Program / multiple data

m One executable : the task scheduler
m One executable : the master compute process (OpenMP)

m One/Many executable(s) : slave compute processes (MPI/OpenMP, 1
process/node)

m One process to tunnel data through different networks

m Inter-process communication with ZeroMQ

-r@‘z :")(Task-based parallelism

Master Tunnel

TR

MPI job 1 MPI job 2
Slave node 1 Slave node 5
/| MPI rank 0 r@w
L) N~ |
Slave node avenode 4 || Slave node 2 Slave node 6
[MPI rank 2 H“él’lrank:; [B MPLrank 1]
CEC EEE T BT

aster L/
Collector

Compute

Each task is computed with all possible OpenMP threads.

-r2 -_>< Experimental setup

Myria (CRIANN)

Pays-Bas

Allemagne

Belgique Tchéquie

Olympe (CALMIP)

v France

[R=><
@ -

Bandwidth

CALMIP login CALMIP compute 1B EDR 100Gb/s
CRIANN login CALMIP login Renater : 74.1 MB/s
CRIANN login CRIANN compute Omnipath 100GiB/s

4

Latency (ping)

CALMIP login CALMIP compute 0.09 ms
CRIANN login CALMIP login 16.72 ms
CRIANN login CRIANN compute 0.23 ms

TR=X<

m Size of the vectors : N = 21691814, 109 tasks

m 412 MiB sent to each MPI group at the beginning

m 165 MiB sent to each MPI group per Davidson iteration

m 1.5 MiB as a result of a task

m Starting from a bad guess : [10 ... 0 0] — 17 iterations

Configuration Neore Wall time
40 nodes Olympe 1440 36:51
40 nodes Myria 1120 44:10
20 nodes Myria, 20 nodes Olympe 1280 43:48

TR=X<

m Size of the vectors : N = 21691814, 21854 665 tasks
m Stop when relative error is 0.1% — ~ 3% of the tasks
m 412 MiB sent to each MPI group at the beginning

m Each task returns 40 bytes
|

Each ZeroMQ client fetches m tasks, where m is dynamically adjusted such that
the computation of the m tasks takes ~ Ny seconds.

m The next m tasks are prefetched during the current computation

Configuration Neore Wall time
50 nodes Olympe 1800 11:58
50 nodes Myria 1400 14:07
25 nodes Myria, 25 nodes Olympe 1600 13:19

-rQ -_>< Exascale-related algorithms

m We should not fight against the latency, and accept it

m We have seen that asynchronous task-based algorithms can accept very high
latencies

m Can we use a more HPC-friendly solution?

m GPI/GAPSI: efficient + fault tolerant one-sided communications
m StarPU: Task-based parallelism

TR StarPU

m StarPU uses this paradigm, and uses MPI (more efficient, no fault tolerance)
m It can distribute tasks on CPUs and GPUs (or both)

The StarPU runtime system
The need for runtime systems

« “do dynamically what can’t HPC Applications
be done statically anymore = —
Compilers Libraries

« Compilers and libraries
generate (graphs of) tasks

Additional information is
welcome!
« StarPU provides Y

Task scheduling Drivers (CUDA, OpenCL)

[cru GPU

Memory management

TR

SoFTwARE UsiNG STARPU

Some software is known for being able to use StarPU to tackle heterogeneous architectures, here is a non-
exhaustive list (feel free to ask to be added to the list!):

ALASAN, dense linear algebra library

Chameleon, dense linear algebra library

Exa2pro, Enhancing Programmability and boosting Performance Portability for Exascale Computing Systems
ExaGeoStat, Machine learning framework for Climate/Weather prediction applications

ELUSEPA, Navier-Stokes Solver for Unsteady Problems with Bodies in Relative Motion

HiCMA, Low-rank general linear algebra library

hmat, hierarchical matrix C/C++ library

K'Star, OpenMP 4 - compatible interface on top of StarPU.

KSVD, dense SVD on distributed-memary manycore systems

MAGMA, dense linear algebra library, starting from version 1.1

MaPHyS, Massively Parallel Hybrid Solver

MASA-StarPU, Parallel Sequence Comparison

MOAO, HPC framework for computational astronomy, servicing the European Extremely Large Telescope and the
Japanese Subaru Telescope

PaStiX, sparse linear algebra library, starting from version 5.2.1

PEPPHER, Performance Portability and Programmability for Heterogeneous Many-core Architectures
QDWH, QR-based Dynamically Weighted Halley

qr_mumps, sparse linear algebra library

ScalFMM, N-body interaction simulation using the Fast Multipole Method.

SCHNAPS, Solver for Canservative Hyperbolic Non-linear systems Applied to PlasmaS.

SignalPU, a Dataflow-Graph-specific programming model.

SkePU, a skeleton programming framework.

StarNEig, a dense nonsy ic ed) eigs lue salving library.

STARS-H, HPC low-rank matrix market

XcalableMP, Directive-based language eXtension for Scalable and performance-aware Parallel Programming

- -
I.2 —>< Reasonable solutions for exascale:
@ -

m Use StarPU within a small group of nodes: MPI/CPU/GPU task distribution

m Interconnect multiple MPI simulations with GP1/GASPI or ZeroMQ to enable fault
tolerance

R T

Asynchronous Algorithms for
DMC and FCIQMC

TR=X<

E=0. if w > 1.: # Random death of the walker
for kStep in range(nSteps): if random.uniform(0.,1.) < w:
newCoordinates = [] newCoordinates.append (x)
for iWalker in range(nWalkers): else: # Random duplication
x_o0ld = coordinates[iWalker] if random.uniform(0.,1.) < w-1.:
x = DiffusionDrift(x_old) newCoordinates.append (x)
eWalk[iWalk] = Energy(x) coordinates = newCoordinates
E += eWalk[iWalk] E_ref = f(eWalk)
w = exp(-timeStep * (Energy(x) - E_ref)) return E / nSteps

m Walkers have all performed the same number of steps

m Load balancing problems

Tg:'x Pure Diffusion Monte Carlo

for kStep in range(nSteps):
wliWalker] = 1.

for iWalker in range(nWalkers):
x_old = coordinates[iWalker]
x = DiffusionDrift(x_old)
coordinates[iWalker] = x

E += w[iWalker] * Energy(x)
sumWeight += w([iWalker]
wliWalker] *= exp(-timeStep * (Energy(x) - E_ref))

end for iWalker
end for kStep
return E / sumWeight

m Works with a single walker
m No need to synchronize walkers => embarrasing paralellism
m But: weight w goes to zero or infinity = unstable

-r2:>< Asynchronous Diffusion Monte Carlo algorithm

E = 0.
sumWeight = O.
while (continueRun): if w > 2.0: # <- Birth threshold
newCoordinates.append (x)
newCoordinates = [] w o-= 1.
for iWalker in range(nWalkers): # end for kStep
w=1.
x = coordinates[iWalker] if w> 1.:
for kStep in range(nSteps): # <- Maz nSteps newCoordinates.append (x)
x = DiffusionDrift(x) wo-= 1.
if random.uniform(0.,1.) < w:
E += w * Energy(x) newCoordinates . append (x)
sumWeight += w
w *= exp(-timeStep * (Energy(x) - E_ref)) # end for ilWalker
coordinates = newCoordinates
if w < 0.5: # <- Death threshold # end while
if random.uniform(0.,1.) < w: return E / sumWeight
newCoordinates.append(x)
break

re ->< Client/server implementation
@ =

! |
\ N
Walkers server
,: 44 >

/

/

rQ ->< Client/server implementation
@ =

E = 0.
sumWeight = O.
Non-blocking coordinates request

promise = asyncFetchWalkers(server, nWalkers)

Wait for initial coordinates to arrive
coordinates = asyncWait(promise)
while (continueRun):

Request next coordinates

promise = asyncFetchSomeWalkers(server, nWalkers)

for iWalker in range(nWalkers):
w=1.
x = coordinates[iWalker]
for kStep in range(nSteps):
x = DiffusionDrift(x)
sumWeight += w
E += w * Energy(x)

w *= exp(-timeStep* (Energy(x)-E_ref))

if w < 0.5:
if random.uniform(0.,1.) < w:
asyncSendCoordinates(server, x)
break
if w > 2.0:
asyncSendCoordinates(server, x)
w -= 1.
end for kStep
if w> 1.:
asyncSendCoordinates(server, x)
w-=1.
if random.uniform(0.,1.) < w:
asyncSendCoordinates(server, x)

end for iWalker

coordinates = asyncWait (promise)
end while
return E / sumWeight

TR=><

1 walker per node is possible: full GPU acceleration

No load balancing problem

No synchronization required

Fault tolerance: Any compute node can crash

Trajectories can be stopped and requeued to improve ergodization

Multiple walker servers can be added for redundancy, and organized as a network

One VMC trajectory can be implemented as one StarPU task

	Difficulties at the Exascale
	Asynchronous Algorithms for DMC and FCIQMC

