

Demonstrations

Michele Casula

IMPMC, Sorbonne Université and CNRS

Targeting Real Chemical Accuracy at the Exascale project has received funding from the European Union Horizoon 2020 research and innovation programme under Grant Agreement **No. 952165.**

- Recent applications
 Hydrogen
 Protonated water clusters
- Perspectives

- × Quantum materials / quantum crystals:
 - × Both electrons and nuclei are quantum particles
 - × Nuclear quantum effects (NQE) strongly affect materials' properties
 - × Light mass → nuclear delocalization: nuclei are not point-like but have a significant "spread"
 - × Hydrogen and Hydrogen-rich materials belong to this family
 - × Remarkable properties

Towards room temperature superconductivity

4

Hydrogen–based *high-pressure* superconductivity

Sulfur hydride

2015: superconductivity at 203 K and 150 GPa in H₃S (*Nature 525, 73*)

Critical temperature higher than Hg-based cuprates!

Three Bardeen-Cooper-Schrieffer (BCS) golden rules to maximize

$$\Delta = 2\hbar\omega_{\rm cut} \ e^{-1/N(\epsilon_F)V}$$

- **1. large nuclear vibrations**
- 2. high electronic density of states at the Fermi level
- 3.strong coupling between phonons and electrons

VOLUME 21, NUMBER 26 PHYSICAL REVIEW LETTERS

23 December 1968

METALLIC HYDROGEN: A HIGH-TEMPERATURE SUPERCONDUCTOR?

N. W. Ashcroft Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14850 (Received 3 May 1968)

Application of the BCS theory to the proposed metallic modification of hydrogen suggests that it will be a high-temperature superconductor. This prediction has interesting astrophysical consequences, as well as implications for the possible development of a superconductor for use at elevated temperatures.

Hydrogen will meet the above requirements thanks to <u>its light mass</u> But first it needs to become a metal!

Hydrogen/water phase diagram

Hydrogen/water phase diagram

Hydrogen/water phase diagram

× Accurate evaluation of **electronic internal energies** (i.e. full account of *electronic correlation*)

Accurate treatment of the nuclear degrees of freedom by a quantum description

 (i.e. full account of nuclear quantum effects)

× Non-trivial **interplay** between the two

arXiv: 2202.05740: Lorenzo Monacelli, Michele Casula, Kosuke Nakano, Sandro Sorella, Francesco Mauri

arXiv: 2202.05740: Lorenzo Monacelli, Michele Casula, Kosuke Nakano, Sandro Sorella, Francesco Mauri

Electronic part: DMC Nuclear part: Stochastic self-consistent harmonic approximation using BLYP

Color from first-principles (reflectivity)

Color from first-principles (reflectivity)

JCP 154, 224108 (2021): Tommaso Morresi, Lorenzo Paulatto, Rodolphe Vuilleumier, Michele Casula

Electronic part: DFT Nuclear part: Path-integral molecular dynamics (Langevin thermostat) Phonons by "quantum correlators" (static limit of Matsubara Green's function)

One-order-of-magnitude speedup

Ready to be submitted: Tommaso Morresi, Rodolphe Vuilleumier, Michele Casula

We can reproduce the temperature dependence of the vibron frequency!

JCP 154, 224108 (2021): Tommaso Morresi, Lorenzo Paulatto, Rodolphe Vuilleumier, Michele Casula

Supercell made by 3 x 3 x 3 unit cells (54 H atoms); DFT-PBE exchange-correlation functional

Large quantum effects!!

Ready to be submitted: Tommaso Morresi, Rodolphe Vuilleumier, Michele Casula

Based on the vibron frequency matching with experiment: Ama2-24 \rightarrow phase IV

First **path integral molecular dynamics** of **protonated water hexamer** driven by **QMC ionic forces**

Both ions and electrons are treated quantum!

Hints on the dynamics of hydrated proton in a correlated framework

Casula et al. in preparation

protonated water hexamer H₁₃O₆⁺ as "realistic" playground to study H-bond and proton hopping

arXiv: 2202.05740: Miha Srdinsek, Michele Casula, Rodolphe Vuilleumier

Thermodynamic integration scheme to compute entanglement in realistic complex systems

 $H = \sum_{i} \sigma_{i}^{z} \sigma_{i+1}^{z} + r \sigma_{i}^{x}$

Formic acid dimer

Nuclear quantum effects from QMC-based Machine Learning potential energy surfaces:

- Accurate phonon calculations in superconducting hydrides
- From water clusters to bulk water and ice

Development of a non-adiabatic electron-nucleus wave function:

- Quantum anharmonicity naturally included in the wave function
- Nuclear forces more easy to compute
- Electron-phonon coupling

Tommaso Morresi

Romain Taureau

Miha Srdinsek

Abhiroop Lahiri

QMC: applications