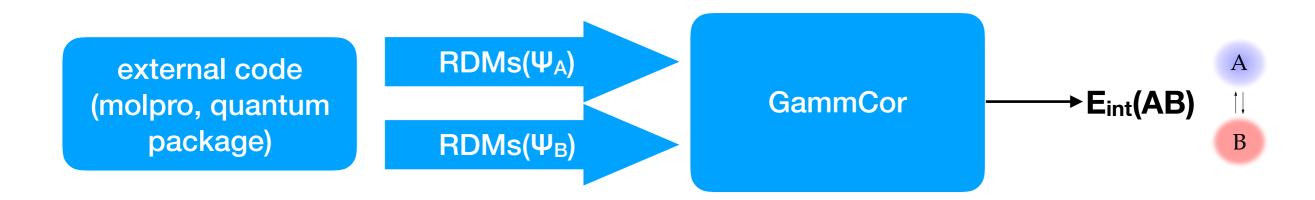


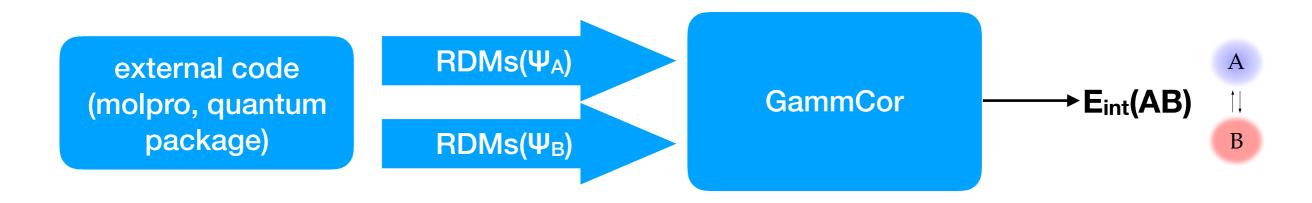
Kasia Pernal, Michal Hapka, Adam Sokół Lodz University of Technology

Van der Waals systems: strained and excited



Targeting Real Chemical Accuracy at the Exascale project has received funding from the European Union Horizon 2020 research and innovation programme under Grant Agreement **No. 952165.**

Molecular interaction energy calculation with GammCor


$$E_{int} = E_{AB} - E_A - E_B$$

Molecular interaction energy calculation with GammCor

$$E_{int} = E_{AB} - E_A - E_B$$

Energy decomposed interaction, e.g. SAPT (symmetry adapted perturbation theory)

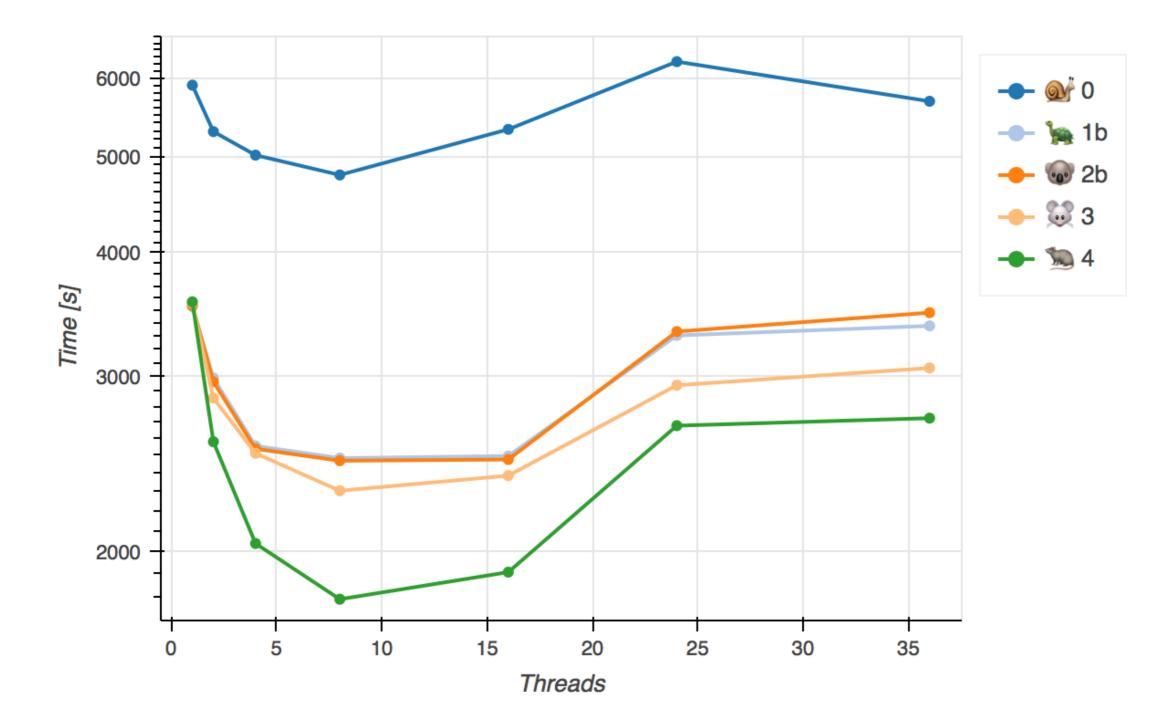
$$E_{\rm int}^{\rm SAPT} = E_{\rm elst}^{(1)} + E_{\rm exch}^{(1)} + E_{\rm ind}^{(2)} + E_{\rm exch-ind}^{(2)} + E_{\rm disp}^{(2)} + E_{\rm exch-disp}^{(2)}$$

components of clear physical meaning - give insight into a character of interaction

New algorithms for handling (reading, sorting, transforming) two-electron integrals: savings on scratch space, better efficiency

OpenMP directives

OpenMP at the MKL level


Improved vectorization

Computing second-order interaction energy terms: new algorithms based on Cholesky decomposition

LONG SAPT: C2H4 Ar, aug-cc-pVQZ, NBasis=428

LONG SAPT: C2H4 Ar, aug-cc-pVQZ, NBasis=428

Time vs. Thread

Version	1	2	4	8
∭ 0	— 01:38:16	— 01:28:14	— 01:23:33	— 01:19:48
🖕 1b	▼ 00:58:48	▼ 00:49:50	▼ 00:42:34	▼ 00:41:23
🐨 2b	- 00:58:56	— 00:49:24	— 00:42:17	— 00:41:08
3	— 00:59:16	▼ 00:47:34	— 00:41:51	▼ 00:38:22
5 4	— 00:59:28	▼ 00:42:59	▼ 00:33:57	▼ 00:29:50

Dispersion Interactions between Molecules in and out of Equilibrium Geometry:

Visualization and Analysis

pubs.acs.org/JPCA

Dispersion Interactions between Molecules in and out of Equilibrium Geometry: Visualization and Analysis

Published as part of The Journal of Physical Chemistry virtual special issue "Vincenzo Barone Festschrift".

Piotr H. Kowalski, Agnieszka Krzemińska, Katarzyna Pernal,* and Ewa Pastorczak

111

We chose a product of strongly orthogonal geminals as a model (multireference) wavefunction

$$\Psi^{GVB} = \hat{A} \prod_{I=1}^{N/2} \Psi^{I}$$

geminals consist in two orbitals singlet-coupled

$$\Psi^{I}(\mathbf{x}_{1},\mathbf{x}_{2}) = \frac{1}{\sqrt{2}} \left(c_{I_{1}}\varphi_{I_{1}}(\mathbf{r}_{1})\varphi_{I_{1}}(\mathbf{r}_{2}) + c_{I_{2}}\varphi_{I_{2}}(\mathbf{r}_{1})\varphi_{I_{2}}(\mathbf{r}_{2}) \right) \left(\alpha\left(\sigma_{1}\right)\beta\left(\sigma_{2}\right) - \alpha\left(\sigma_{2}\right)\beta\left(\sigma_{1}\right) \right)$$

GVB orbitals are localized on bonds and lone pairs \rightarrow intuitive picture, useful for interpretation

Intra-pair correlation \rightarrow bonds can be broken with GVB

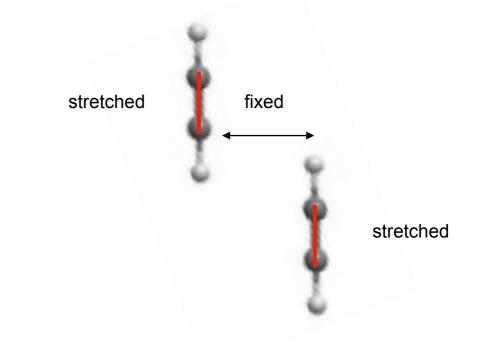
• SAPT(GVB)

$$E_{\rm int}^{\rm SAPT} = E_{\rm elst}^{(1)} + E_{\rm exch}^{(1)} + E_{\rm ind}^{(2)} + E_{\rm exch-ind}^{(2)} + E_{\rm disp}^{(2)} + E_{\rm exch-disp}^{(2)}$$

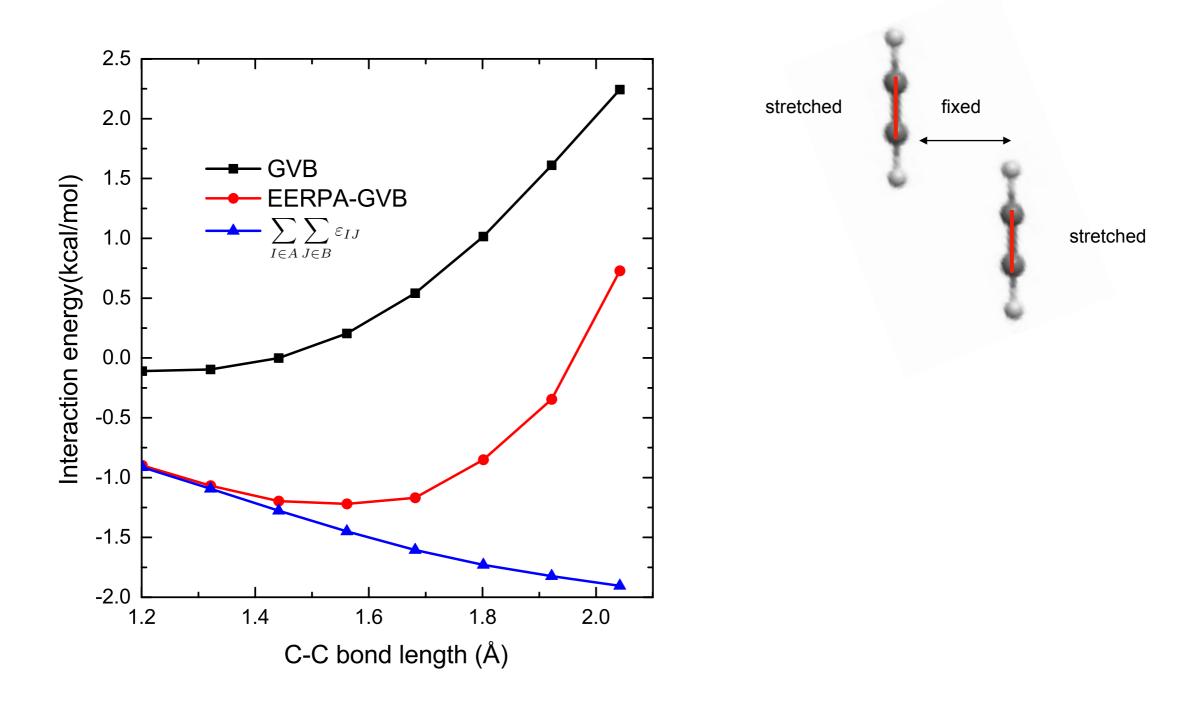
 $E_{\rm int}^{\rm SAPT} = E_{\rm int}^{\rm SAPT}(\gamma_{\rm A}^{\rm GVB}, \Gamma_{\rm A}^{\rm GVB}, \gamma_{\rm B}^{\rm GVB}, \Gamma_{\rm B}^{\rm GVB})$

 $D^{AB}(\mathbf{r}) = \frac{1}{2} \left(D^A(\mathbf{r}) + D^B(\mathbf{r}) \right)$

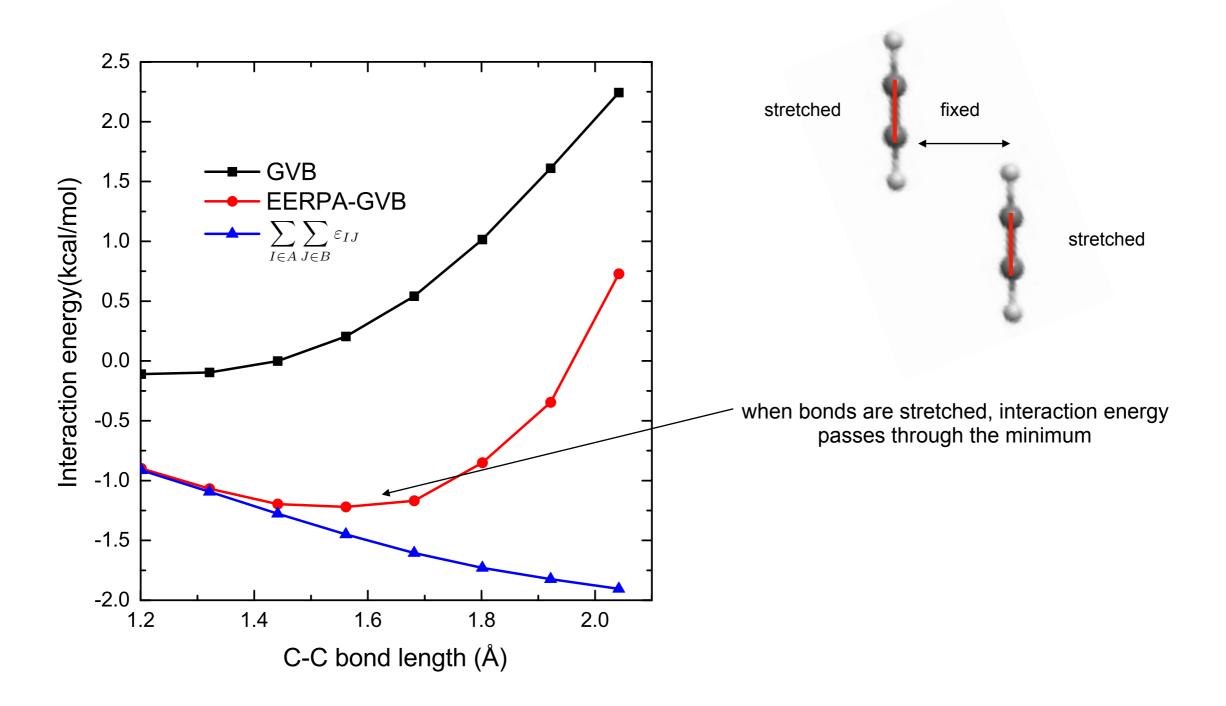
RDMs are computed here from GVB wavefunctions.

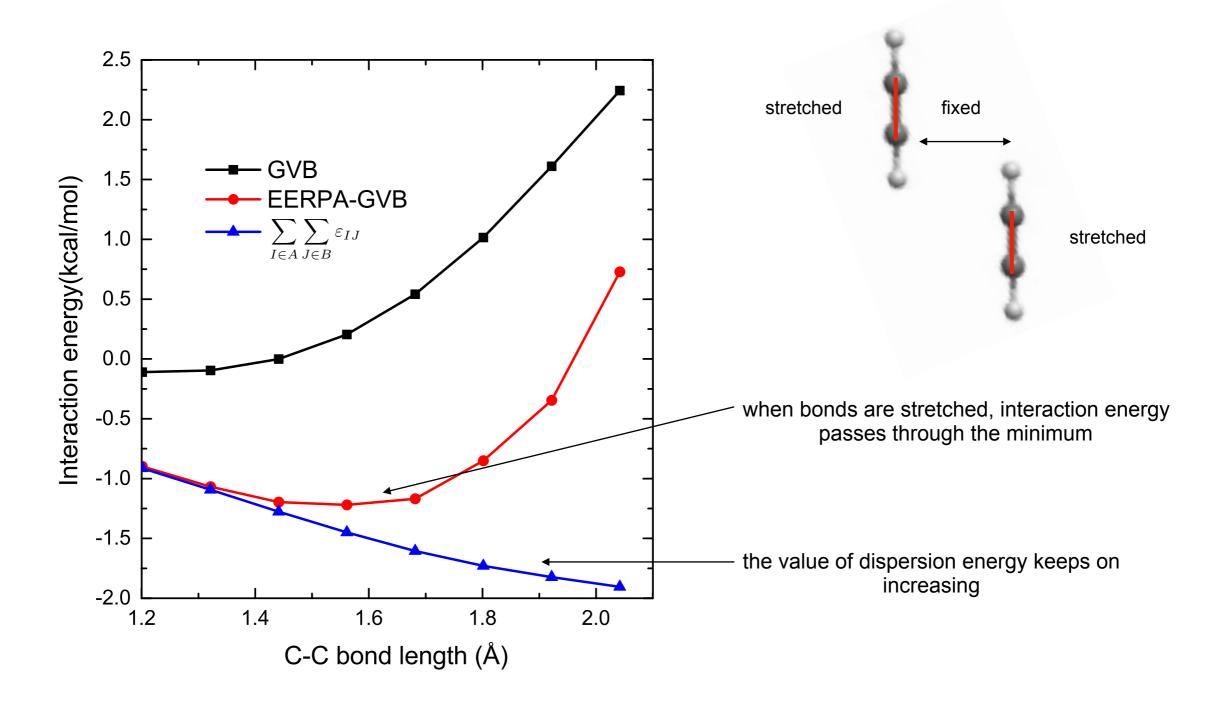

Dispersion energy descriptor

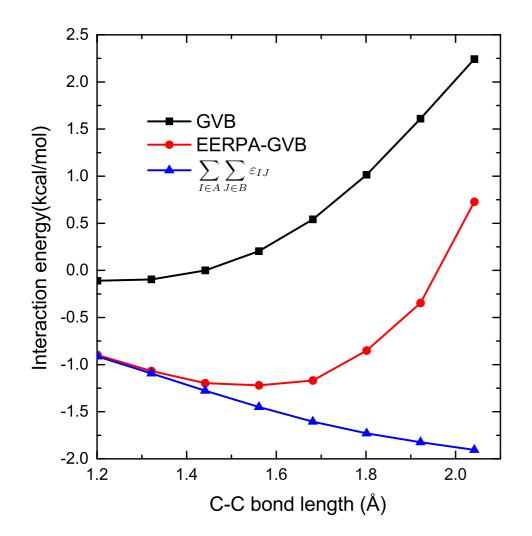
$$\int D^{AB}(\mathbf{r}) d\mathbf{r} = E_{disp}^{ERPA}$$


Consistent description of dispersion energy

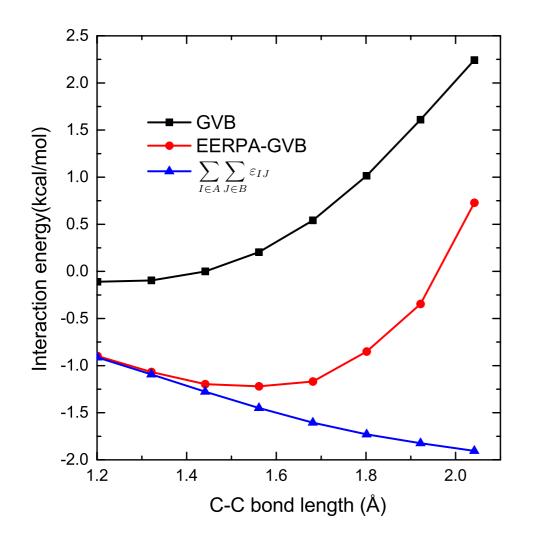
$$\lim_{R_{AB}\to\infty} E_{disp}^{ERPA} = E_{disp}^{(2)}$$







SAPT analysis



$r_{\rm CC}/{ m \AA}$	1.20	1.56	1.80	1.92
GVB	-0.33	0.20	1.01	1.61
EERPA-GVB	-1.16	-1.22	-0.85	-0.35
SAPT(GVB)	-1.07	-1.18	-0.79	-0.50
$E_{elst}^{(1)}$	-1.05	-2.50	-3.04	-3.22
$E_{exch}^{(1)}$	0.83	3.04	4.27	4.86
$E_{ind}^{(2)}$	-0.22	-1.07	-1.61	-1.87
$E_{exch-ind}^{(2)}$	0.16	0.90	1.41	1.66
$E_{disp}^{(2)}$	-0.87	-1.84	-2.22	-2.39
$E_{exch-disp}^{(2)}$	0.08	0.29	0.40	0.45
$E_{disp}^{(2)} + E_{exch-disp}^{(2)}$, -0.79	-1.55	-1.82	-1.93
$\sum_{I \in A} \sum_{J \in B} \varepsilon_{IJ}$	-0.91	-1.45	-1.73	-1.82

Interaction energies and their components of acetylene dimer for different C-C bond lengths in kcal/mol

SAPT analysis

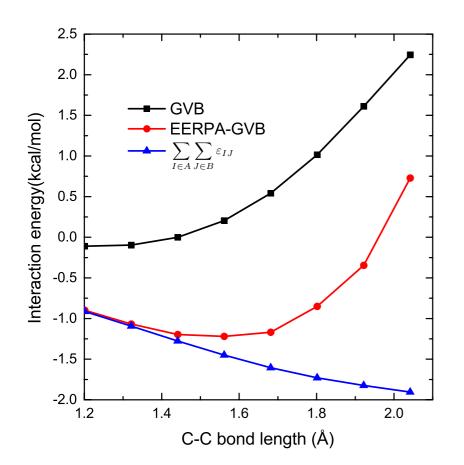

dispersion increases \rightarrow interaction is strengthened

$r_{ m CC}/{ m \AA}$	1.20	1.56	1.80	1.92
GVB	-0.33	0.20	1.01	1.61
EERPA-GVB	-1.16	-1.22	-0.85	-0.35
SAPT(GVB)	-1.07	-1.18	-0.79	-0.50
$E_{elst}^{(1)}$	-1.05	-2.50	-3.04	-3.22
$E_{exch}^{(1)}$	0.83	3.04	4.27	4.86
$E_{ind}^{(2)}$	-0.22	-1.07	-1.61	-1.87
$E_{exch-ind}^{(2)}$	0.16	0.90	1.41	1.66
$E_{disp}^{(2)}$	-0.87	-1.84	-2.22	-2.39
$E_{exch-disp}^{(2)}$	0.08	0.29	0.40	0.45
$E_{disp}^{(2)} + E_{exch-disp}^{(2)}$	-0.79	-1.55	-1.82	-1.93
$\sum_{I \in A} \sum_{J \in B} \varepsilon_{IJ}$	-0.91	-1.45	-1.73	-1.82

Interaction energies and their components of acetylene dimer for different C-C bond lengths in kcal/mol

SAPT analysis

1.20	1.56	1.80	1.92
-0.33	0.20	1.01	1.61
-1.16	-1.22	-0.85	-0.35
-1.07	-1.18	-0.79	-0.50
-1.05	-2.50	-3.04	-3.22
0.83	3.04	4.27	4.86
-0.22	-1.07	-1.61	-1.87
0.16	0.90	1.41	1.66
-0.87	-1.84	-2.22	-2.39
0.08	0.29	0.40	0.45
-0.79	-1.55	-1.82	-1.93
-0.91	-1.45	-1.73	-1.82
	-0.33 -1.16 -1.07 -1.05 0.83 -0.22 0.16 -0.87 0.08 -0.79	-0.33 0.20 -1.16 -1.22 -1.07 -1.18 -1.05 -2.50 0.83 3.04 -0.22 -1.07 0.16 0.90 -0.87 -1.84 0.08 0.29 -0.79 -1.55	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

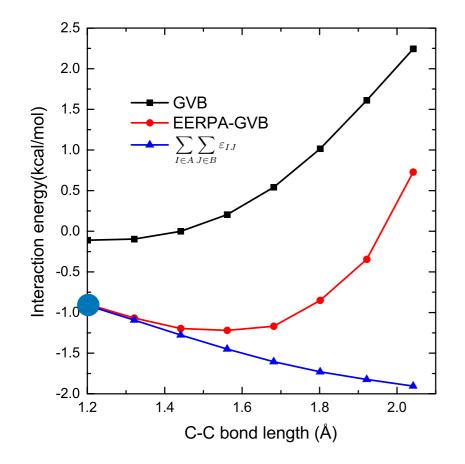

dispersion increases \rightarrow interaction is strengthened

Interaction energies and their components of acetylene dimer for different C-C bond lengths in kcal/mol

exchange energy also increases and for sufficiently large C-C bond it is not compensated by electrostatic energy \rightarrow interaction is weakened

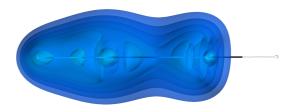
Dispersion energy density, $D^{AB}(\mathbf{r})$, analysis

$r_{ m CC}/{ m \AA}$	1.20	1.56	1.80	1.92
C-H (far)	2	2	1	1
C-H (close)	35	27	24	23
C-C	63	71	75	76

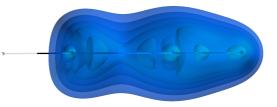

Model case: acetylene dimer

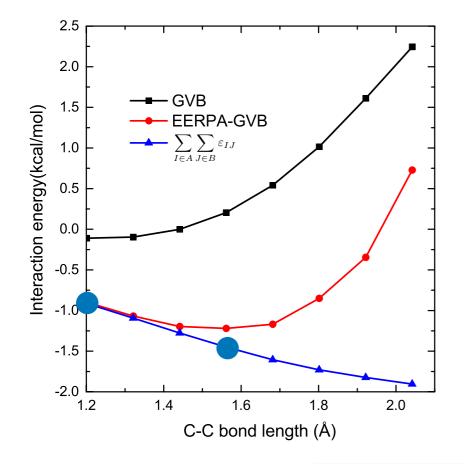
Dispersion energy density, DAB(**r**), analysis

C-C bond length: 1.20


$r_{ m CC}/{ m \AA}$	1.20	1.56	1.80	1.92
C-H (far)	2	2	1	1
C-H (close)	35	27	24	23
C-C	63	71	75	76

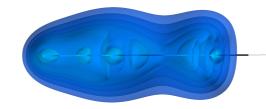
Dispersion energy density, $D^{AB}(\mathbf{r})$, analysis




C-C bond length: 1.20

C-C bond length: 1.56

$r_{ m CC}/{ m \AA}$	1.20	1.56	1.80	1.92
C-H (far)	2	2	1	1
C-H (close)	35	27	24	23
C-C	63	71	75	76

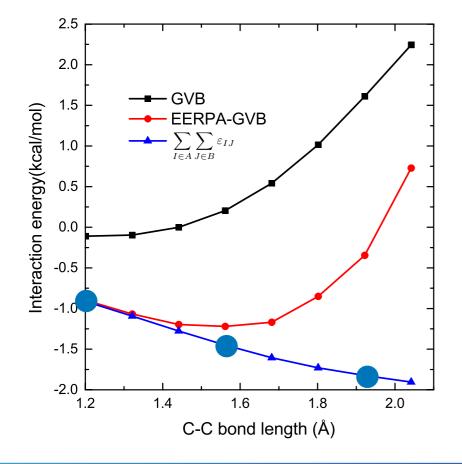


Model case: acetylene dimer

Dispersion energy density, $D^{AB}(\mathbf{r})$, analysis

C-C bond length: 1.20

C-C bond length: 1.56



C-C bond length: 1.92

$r_{\rm CC}/{ m \AA}$	1.20	1.56	1.80	1.92
C-H (far)	2	2	1	1
C-H (close)	35	27	24	23
C-C	63	71	75	76

Dispersion interactions in exciton-localised states. Theory and applications to $\pi - \pi^*$ and $n - \pi^*$ excited states

Mohammad Reza Jangrouei,^{†,¶} Agnieszka Krzemińska,^{†,¶} Michał Hapka,[‡] Ewa Pastorczak,[†] and Katarzyna Pernal^{*,†}

†Institute of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz,

Poland

‡Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland

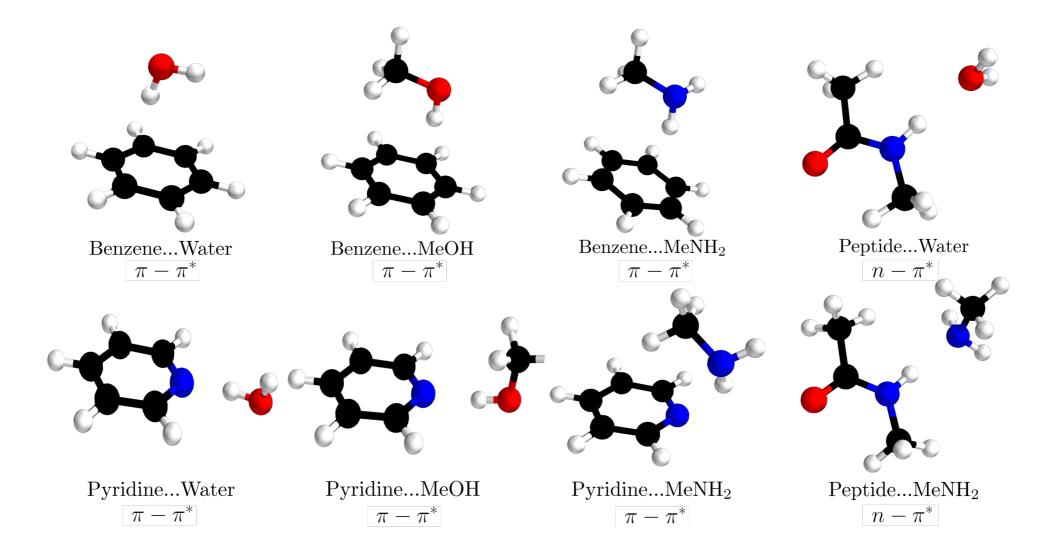
 For ground-state weakly interacting systems, dispersion energy follows from the famous Casimir-Polder formula

$$E_{\rm disp}^{(2)}(A_I B_J) = -\frac{1}{2\pi} \int d\mathbf{r}_1 \int d\mathbf{r}_1 \int d\mathbf{r}_2 \int d\mathbf{r}_2 \int d\mathbf{r}_2 \frac{1}{r_{12}} \frac{1}{r_{12}'} \int_0^\infty d\omega \chi_+^{A_I}(\mathbf{r}_1, \mathbf{r}_1'; i\omega) \chi_+^{B_J}(\mathbf{r}_2, \mathbf{r}_2'; i\omega)$$

• Dispersion energy is negative (attractive interaction)

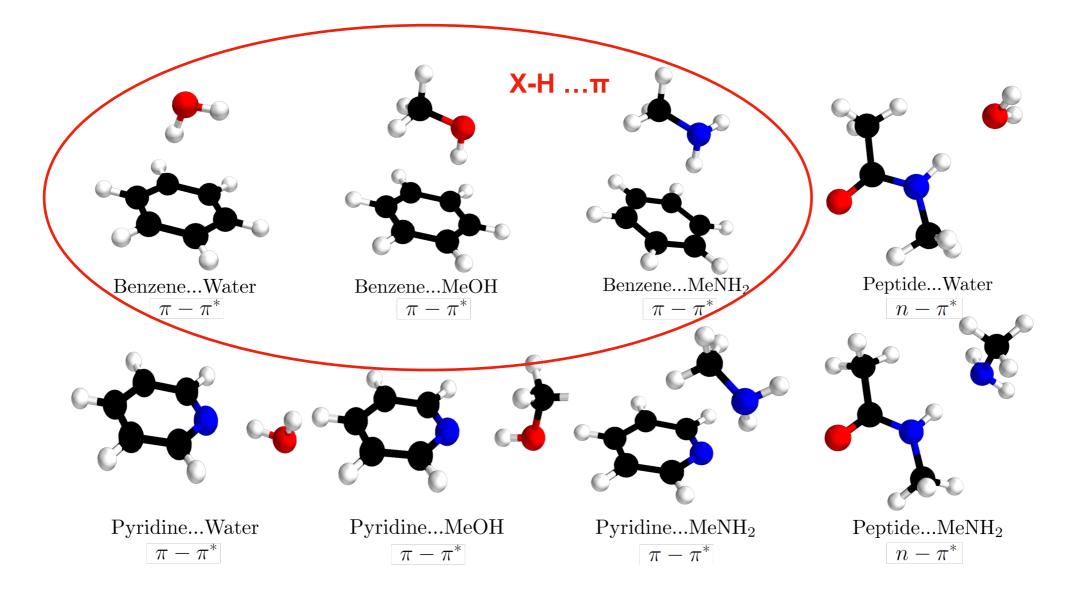
Generalization of the Casimir-Polder formula for systems with localized excitons

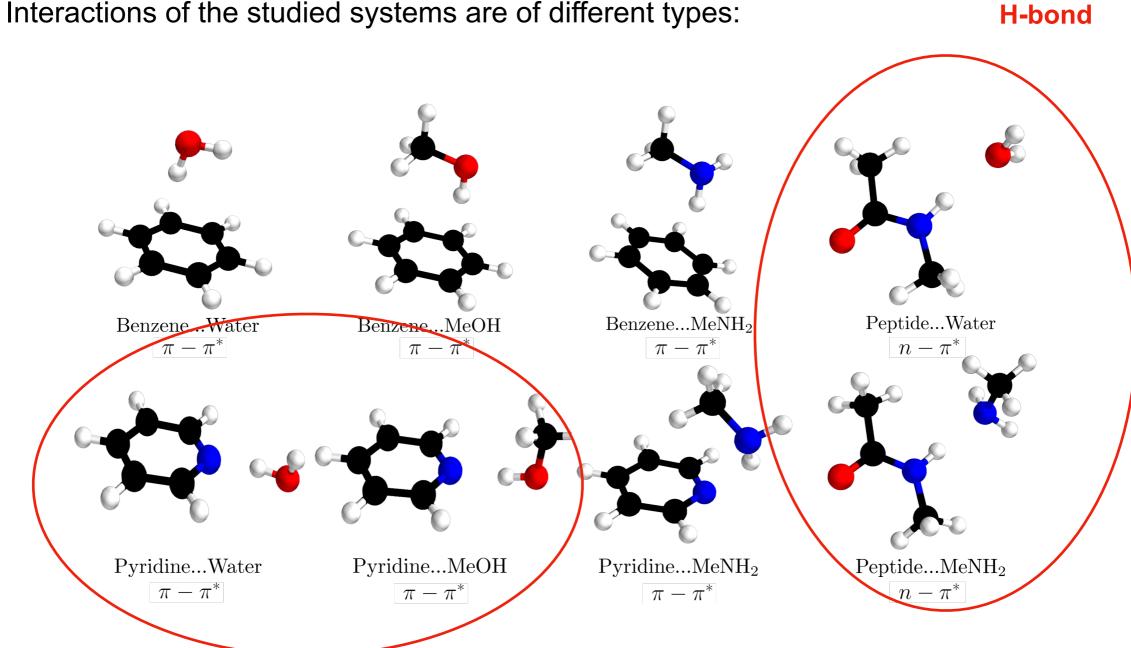
$$E_{\rm disp}^{(2)}(A_I B_J) = -\frac{1}{2\pi} \int d\mathbf{r}_1 \int d\mathbf{r}_1 \int d\mathbf{r}_2 \int d\mathbf{r}_2 \int d\mathbf{r}_2 \frac{1}{r_{12}} \frac{1}{r_{12}} \int_0^\infty d\omega \chi_+^{A_I}(\mathbf{r}_1, \mathbf{r}_1'; i\omega) \chi_+^{B_J}(\mathbf{r}_2, \mathbf{r}_2'; i\omega)$$


$$+ \sum_{\mu < I, \nu < J} W^{A_I B_J}_{\mu\nu} + \sum_{\mu > I, \nu < J} W^{A_I B_J}_{\mu\nu} + \sum_{\mu < I, \nu > J} W^{A_I B_J}_{\mu\nu}$$

$$W_{\mu\nu}^{A_{I}B_{J}} = -\frac{1}{\omega_{\mu}^{A_{I}} + \omega_{\nu}^{B_{J}}} \left(\int \mathrm{d}\mathbf{r}_{1} \int \mathrm{d}\mathbf{r}_{2} \frac{\rho_{\mu}^{A_{I}}(\mathbf{r}_{1})\rho_{\nu}^{B_{J}}(\mathbf{r}_{2})}{r_{12}} \right)^{2}$$

The extra terms (non-Casimir-Polder) are positive for multiple localized excitons - repulsive forces resulting from long-range correlation.


• Studied dimers included excitons on: benzene (pi-pi*), pyridine (pi-pi*) or peptide (n-pi*)


- SAPT(CAS) only needs 1,2-RDMs of monomers
- We have used CASSCF wavefunctions to obtain RDMs of monomers

• Interactions of the studied systems are of different types:

• Interactions of the studied systems are of different types:

Table 4: Interaction energies in kcal·mol⁻¹ for $\pi - \pi^*$ (benzene and pyridine complexes) and $n - \pi^*$ (peptide complexes) excited states. The SAPT acronym refers to SAPT(CAS) results including the δ_{CAS} correction [see Eq. (54)]. The Est. EOM-CCSD(T) values from Ref. 19 are given as reference in the last column. Mean unsigned errors (MUE) and mean absolute percentage errors (MA%E) are computed with respect to the reference.

	CAS	CAS	AC0	lrAC0	CASPT2	CAS	SAPT	LC-BOP	ref.
		+DISP	-CAS	-CAS		-reVV10		+LRD	
benzene-water	0.11	-2.43	-2.39	-2.82	-3.12	-2.93	-2.51	-2.88	-2.67
benzene-MeOH	0.96	-3.15	-2.62	-3.74	-3.42	-4.03	-3.25	-3.55	-3.49
$benzene-MeNH_2$	1.51	-2.57	-2.40	-3.00	-3.24	-3.46	-2.62	-2.74	-2.80
pyridine-water	-4.20	-7.41	-6.61	-7.34	-7.90	-6.37	-6.91	-7.96	-7.15
pyridine-MeOH	-4.01	-7.97	-6.72	-7.91	-7.21	-6.98	-7.44	-8.37	-7.70
$pyridine-MeNH_2$	0.61	-3.73	-3.43	-4.11	-3.96	-4.24	-3.82	-4.06	-4.19
peptide-water	-2.23	-4.70	-4.23	-4.52	-4.92	-4.29	-4.36	-4.81	-4.63
$peptide-MeNH_2$	-2.08	-6.76	-6.18	-6.82	-7.28	-6.23	-6.40	-6.97	-6.82
MUE	3.77	0.24	0.61	0.15	0.40	0.49	0.23	0.28	-
MA%E	88.83	5.93	13.27	3.70	8.74	10.77	4.85	5.12	-

We have shown that SAPT(CAS) yields interaction energy of good accuracy.

	$E_{\rm elst}^{(1)}$	$E_{\mathrm{exch}}^{(1)}$	$E_{\rm ind}^{(2)}$	$E_{\rm exch-ind}^{(2)}$	$E_{\rm disp}^{(2)}$	$E_{\rm exch-disp}^{(2)}$	$E_{\rm int}^{\rm SAPT}$	$\varepsilon_{\mathrm{disp}}^{1 \to 0}$
benzene-water	-1.85	2.82	-1.23	0.65	-2.88	0.33	-2.16	-0.04
benzene-MeOH	-2.10	4.07	-1.57	0.96	-4.63	0.52	-2.76	-0.06
$benzene-MeNH_2$	-1.68	3.73	-1.12	0.88	-4.62	0.54	-2.28	-0.02
pyridine-water	-11.23	10.66	-5.17	2.96	-4.05	0.84	-5.99	-0.07
pyridine-MeOH	-11.79	11.79	-5.92	3.53	-4.95	0.99	-6.37	-0.08
$pyridine-MeNH_2$	-3.89	5.46	-1.79	1.30	-5.01	0.66	-3.27	-0.08
peptide-water	-5.99	5.33	-1.95	1.01	-2.93	0.46	-4.09	0.00
$peptide-MeNH_2$	-9.84	10.91	-5.04	3.35	-5.78	1.10	-5.30	0.00
	()							
	$\Delta E_{\rm elst}^{(1)}$	$\Delta E_{\rm exch}^{(1)}$	$\Delta E_{\rm ind}^{(2)}$	$\Delta E_{\rm exch-ind}^{(2)}$	$\Delta E_{\rm disp}^{(2)}$	$\Delta E_{\rm exch-disp}^{(2)}$	$\Delta E_{ m int}^{ m SAPT}$	
benzene-water	$\frac{\Delta E_{\rm elst}^{(1)}}{0.88}$	$\frac{\Delta E_{\rm exch}^{(1)}}{-0.35}$	$\frac{\Delta E_{\rm ind}^{(2)}}{0.11}$	$\frac{\Delta E_{\rm exch-ind}^{(2)}}{-0.05}$	$\frac{\Delta E_{\rm disp}^{(2)}}{0.17}$	$\frac{\Delta E_{\rm exch-disp}^{(2)}}{-0.05}$	$\frac{\Delta E_{\rm int}^{\rm SAPT}}{0.72}$	
benzene-water benzene-MeOH								
	0.88	-0.35	0.11	-0.05	0.17	-0.05	0.72	
benzene-MeOH	$\begin{array}{c} 0.88\\ 0.98\end{array}$	$-0.35 \\ -0.45$	$\begin{array}{c} 0.11 \\ 0.15 \end{array}$	$-0.05 \\ -0.08$	$\begin{array}{c} 0.17\\ 0.24 \end{array}$	$-0.05 \\ -0.07$	$\begin{array}{c} 0.72 \\ 0.77 \end{array}$	
benzene-MeOH benzene-MeNH $_2$	$0.88 \\ 0.98 \\ 0.54$	$-0.35 \\ -0.45 \\ -0.25$	$0.11 \\ 0.15 \\ 0.08$	$-0.05 \\ -0.08 \\ -0.03$	$0.17 \\ 0.24 \\ 0.22$	$-0.05 \\ -0.07 \\ -0.05$	$\begin{array}{c} 0.72 \\ 0.77 \\ 0.50 \end{array}$	
benzene-MeOH benzene-MeNH $_2$ pyridine-water	$0.88 \\ 0.98 \\ 0.54 \\ -0.04$	$-0.35 \\ -0.45 \\ -0.25 \\ 0.02$	$\begin{array}{c} 0.11 \\ 0.15 \\ 0.08 \\ 0.02 \end{array}$	$-0.05 \\ -0.08 \\ -0.03 \\ 0.01$	$\begin{array}{c} 0.17 \\ 0.24 \\ 0.22 \\ 0.02 \end{array}$	$-0.05 \\ -0.07 \\ -0.05 \\ 0.00$	$\begin{array}{c} 0.72 \\ 0.77 \\ 0.50 \\ 0.03 \end{array}$	
benzene-MeOH benzene-MeNH $_2$ pyridine-water pyridine-MeOH	$\begin{array}{c} 0.88 \\ 0.98 \\ 0.54 \\ -0.04 \\ -0.03 \end{array}$	$-0.35 \\ -0.45 \\ -0.25 \\ 0.02 \\ 0.02$	$\begin{array}{c} 0.11 \\ 0.15 \\ 0.08 \\ 0.02 \\ 0.02 \end{array}$	$-0.05 \\ -0.08 \\ -0.03 \\ 0.01 \\ 0.01$	$\begin{array}{c} 0.17 \\ 0.24 \\ 0.22 \\ 0.02 \\ 0.04 \end{array}$	$-0.05 \\ -0.07 \\ -0.05 \\ 0.00 \\ 0.00$	$\begin{array}{c} 0.72 \\ 0.77 \\ 0.50 \\ 0.03 \\ 0.04 \end{array}$	

Generation of an exciton on benzene weakens the X-H... π bond.

Surprise: it is not only due to electrostatic but also decreased dispersion.

	$E_{\rm elst}^{(1)}$	$E_{\mathrm{exch}}^{(1)}$	$E_{\rm ind}^{(2)}$	$E_{\text{exch-ind}}^{(2)}$	$E_{\rm disp}^{(2)}$	$E_{\rm exch-disp}^{(2)}$	$E_{\rm int}^{\rm SAPT}$	$\varepsilon_{ m disp}^{1 ightarrow 0}$
benzene-water	-1.85	2.82	-1.23	0.65	-2.88	0.33	-2.16	-0.04
benzene-MeOH	-2.10	4.07	-1.57	0.96	-4.63	0.52	-2.76	-0.06
$benzene-MeNH_2$	-1.68	3.73	-1.12	0.88	-4.62	0.54	-2.28	-0.02
pyridine-water	-11.23	10.66	-5.17	2.96	-4.05	0.84	-5.99	-0.07
pyridine-MeOH	-11.79	11.79	-5.92	3.53	-4.95	0.99	-6.37	-0.08
$pyridine-MeNH_2$	-3.89	5.46	-1.79	1.30	-5.01	0.66	-3.27	-0.08
peptide-water	-5.99	5.33	-1.95	1.01	-2.93	0.46	-4.09	0.00
$peptide-MeNH_2$	-9.84	10.91	-5.04	3.35	-5.78	1.10	-5.30	0.00
	$\Delta E_{\rm elst}^{(1)}$	$\Delta E_{\mathrm{exch}}^{(1)}$	$\Delta E_{\rm ind}^{(2)}$	$\Delta E_{\rm exch-ind}^{(2)}$	$\Delta E_{\rm disp}^{(2)}$	$\Delta E_{\rm exch-disp}^{(2)}$	$\Delta E_{ m int}^{ m SAPT}$	
benzene-water	0.88	-0.35	0.11	-0.05	0.17	-0.05	0.72	
benzene-MeOH	0.98	-0.45	0.15	-0.08	0.24	-0.07	0.77	
benzene-MeNH $_2$	0.54	-0.25	0.08	-0.03	0.22	-0.05	0.50	
• 1• • • • •								
pyridine-water	-0.04	0.02	0.02	0.01	0.02	0.00	0.03	
pyridine-water pyridine-MeOH	$-0.04 \\ -0.03$	$\begin{array}{c} 0.02 \\ 0.02 \end{array}$	$\begin{array}{c} 0.02 \\ 0.02 \end{array}$	$\begin{array}{c} 0.01 \\ 0.01 \end{array}$	$\begin{array}{c} 0.02\\ 0.04 \end{array}$	$\begin{array}{c} 0.00\\ 0.00\end{array}$	$\begin{array}{c} 0.03 \\ 0.04 \end{array}$	
- •								
pyridine-MeOH	-0.03	0.02	0.02	0.01	0.04	0.00	0.04	

H-bonds are weakened when n-pi* exciton is generated.

It is mainly the electrostatic effect: electron density is removed from H-bond acceptor (N atom).

	$E_{\rm elst}^{(1)}$	$E_{\mathrm{exch}}^{(1)}$	$E_{\rm ind}^{(2)}$	$E_{\rm exch-ind}^{(2)}$	$E_{\rm disp}^{(2)}$	$E_{\rm exch-disp}^{(2)}$	$E_{\rm int}^{\rm SAPT}$	$\varepsilon_{\mathrm{disp}}^{1 \to 0}$
benzene-water	-1.85	2.82	-1.23	0.65	-2.88	0.33	-2.16	-0.04
benzene-MeOH	-2.10	4.07	-1.57	0.96	-4.63	0.52	-2.76	-0.06
$benzene-MeNH_2$	-1.68	3.73	-1.12	0.88	-4.62	0.54	-2.28	-0.02
pyridine-water	-11.23	10.66	-5.17	2.96	-4.05	0.84	-5.99	-0.07
pyridine-MeOH	-11.79	11.79	-5.92	3.53	-4.95	0.99	-6.37	-0.08
$pyridine-MeNH_2$	-3.89	5.46	-1.79	1.30	-5.01	0.66	-3.27	-0.08
peptide-water	-5.99	5.33	-1.95	1.01	-2.93	0.46	-4.09	0.00
$peptide-MeNH_2$	-9.84	10.91	-5.04	3.35	-5.78	1.10	-5.30	0.00
	$\Delta E_{\rm elst}^{(1)}$	$\Delta E_{\mathrm{exch}}^{(1)}$	$\Delta E_{\rm ind}^{(2)}$	$\Delta E_{\rm exch-ind}^{(2)}$	$\Delta E_{\rm disp}^{(2)}$	$\Delta E_{\rm exch-disp}^{(2)}$	$\Delta E_{ m int}^{ m SAPT}$	
benzene-water	0.88	-0.35	0.11	-0.05	0.17	-0.05	0.72	
benzene-MeOH	0.98	-0.45	0.15	-0.08	0.24	-0.07	0.77	
benzene- $MeNH_2$	0.54	-0.25	0.08	-0.03	0.22	-0.05	0.50	
pyridine-water	-0.04	0.02	0.02	0.01	0.02	0.00	0.03	
pyridine-MeOH	-0.03	0.02	0.02	0.01	0.04	0.00	0.04	
$pyridine-MeNH_2$	0.17	-0.15	0.04	-0.04	0.15	-0.03	0.14	
peptide-water	0.71	-0.03	0.12	-0.03	-0.01	0.01	0.77	

H-bonds are **not** weakened when pi-pi* exciton is generated on pyridine.

Electrostatic energy not affected: electron density on H-bond acceptor (N atom) not changed.

Handing (I/O) large files (integrals) has remained a bottleneck restricting the size of systems we can compute.

We are developing a new Cholesky-based algorithm for computing second-order exchangepolarization terms.

Combination of SAPT with CIPSI (gammcor and quantum package via trexio) opens a way for improving the accuracy of SAPT.

Systems with local excitons of biological importance: nucleobase dimers