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Establishing QMC as a reliable method for excited states

Excited states — Describing absorption already complicated

Example: Vertical excitation energy of thiophene
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Not an unusual situation!

Dash, Moroni, Filippi, Scemama, JCTC (2021)



Needed accuracy for QMC and excited states

Surge of benchmarking studies for excited states

Main focus: absorption and fluorescence
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for example, mean absolute error of CC3 excitations < 0.03 eV



Why are excited states particularly demanding?

— Often stronger electronic correlations than in the ground states

— One needs uniformely good descrition of multiple energy surfaces

Absorption

Phosphorescence

— Structural relaxation? Density functional theory often fails

Not many methods available/suitable for this purpose!



’Quick reminder: Variational Monte Carlo‘

Use Monte Carlo to compute expectation values

g (VIHNY) /ngN HVY(R) | [V(R)]

(W) V(R) | JdRNW(R)
= /dR3NEL(R) P(R)
R LM
%\ = (E(R) = o > EL(R)
i=1
R =(ry,...,ry) sampled from P(R) via Metropolis algorithm

Just a to compute integrals in many dimensions

— Beyond VMC with projection Monte Carlo (e.g. DMC)



’ QMC: Ready to explore its performance for excited states

In QMC literature, a lot of total (ground state) energy calculations

... with "borrowed” geometries and/or wave functions

Why? What about energy derivatives?

Standard approach: cost of OE > cost of E: | O(N*) — O(N°®)

Progress in the last decade‘

Efficient calculation of analytical derivatives of energy

... also for multi-determinantal expansions

|

Structural 4 variational optimization in ground and excited states!



’What do we need to perform an energy optimization?

’ Interatomic forces‘ — derivatives wrt nuclear coordinates

We employ low-variance estimators of forces, F = —0,E
0V
F=—0,(EL) = —(0nEL +2(E. — E) v )

""Pulay’’ term

—TN—

H — E)0,V OV
= F = {(0.H+ (WL) +2(EL*E)W>

————

zero expectation value

’ Lower fluctuations‘ —0as WV — WYy

Then, 0, E requires ‘%W and J,E; | — Computationally costly!




’ QMC: Ready to explore its performance for excited states‘

Efficient derivatives of energy for many parameters + determinants

Example: Polyenes C,H, 1> — from C4Hg to
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-+ Optimization tools — QMC “internally consistent”

Filippi, Assaraf, Moroni, JCP (2016); JCTC (2017)



’ Key is the choice of many-body wave function ‘

Here, we use Jastrow-Slater wave functions

\ll(rl,...,rN):J(rl,...,rN)XZc,-D,-(rl,...,rN)
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Open questions for calculations in (ground and) excited state:

— How do we choose the determinant component?

— How compact can the wave function be?

— Obtain | competitive accuracy




’A complete active space (quickly unmanageble) wave function ‘

Example: Cyanine dyes
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We are only correlating a subset of electrons/orbitals!

... and some sort of truncation of expansion is clearly needed



’A better scheme to build the determinantal expansion

Selected Cl | — Automated approach for wave function generation

Verpsi = Y | 6D
D;eS
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Can this lead to compact QMC expansions?



’A better scheme to build the determinantal expansion

Selected Cl | — Automated approach for wave function generation

Verpsi = Y | 6D
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Can this lead to compact QMC expansions?



Excited states and wave function dependence in QI\/IC‘

Cyanine dye: Ground and excited states of different symmetries
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Strong dependence but automated expansions compact + accurate

Cuzzocrea, Scemama, Briels, Moroni, Filippi, JCTC 16, 4203 (2020)



Other examples: Formaldehyde and thioformaldehyde

Vertical excitation energy with QMC-CIPSI
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We have nearly exact values with handful of determinants!

DMC is not needed

Dash, Feldt, Moroni, Scemama, Filippi, JCTC (2020)



’Computation of excitation energies

Two ingredients for a robust protocol:

1) ‘ Balanced expansions ‘ for multiple states

— generate expansions of similar quality (e.g. dEprs or ocr)

2) ‘ Full optimization ‘ of the Jastrow-Slater wave function

— Chemically accurate excitations (error < 0.04 eV)

and with very few determinants

— Already with VMC!

Validation criterion | — closeness of VMC and DMC excitations!




Establishing QMC as reference method: larger systems

Larger cyanine dyes
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QMC chemically accurate and applicable to all sizes

— Coupled cluster prohibitive beyond model with 15 C4+N atoms!

Cuzzocrea, Moroni, Scemama, Filippi, JCTC (2022)



’Establishing QMC as reference method: double excitations‘

’ Double excitations‘ — Generally problematic

Also ... for high-level coupled cluster (e.g. CC3, CCSDT)

Example: Vertical (double) excitation energy of tetrazine
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’ Establishing QMC as reference method: double excitations

’ Double excitations‘ — Problematic also for coupled cluster

Let us assess performance of QMC!

L™
G AEyyme  AEpuc  (eV)
QMC 4.35(1) 4.33(1)
cC3 5.25
exFCl 4.32 A AT

Shepard, Panades-Barrueta, Moroni, Scemama, Filippi, JCTC (2022)



’ Establishing QMC as reference method: double excitations

| Double excitations | — Problematic also for coupled cluster

Let us assess performance of QMC!

q!d ﬁ;
¢« » AEyyc  AEpuc  (eV)
QMC 5.70(1) 5.63(1)
cc3 6.76
exFCl 5.56(11) QM ez

exFCl/aug-cc-pVDZ

Shepard, Panades-Barrueta, Moroni, Scemama, Filippi, JCTC (2022)



’ Establishing QMC as reference method: double excitations

| Double excitations | — Problematic also for coupled cluster

Let us assess performance of QMC!

1
(% 9\/ ‘vg,
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v “ AEVMc(Sl) AEVMc(SZ) AAE (eV)
QMC 6.10(4) 7.08(4) 1.02(5)
CC3 7.10 6.21 —0.89
exFCl 5.8(4) 6.9(2) 1.10(13)

QMC/aug-cc-pvVDZ
CC3/aug-cc-pVTZ
exFCl/aug-cc-pVDZ

We trust QMC as the reference!

Shepard, Panades-Barrueta, Moroni, Scemama, Filippi, JCTC (2022)



| Excited state in QMC: which variational principle?

We compute total energies of multiple states

’ Energy minimization ‘ is the method of choice

If states have different symmetry, easy state-specific optimization!

If states have same symmetry

State-specific | optimization with orthogonality constraint

(V)|v,)?
(VW) (v, vy)

Ess[V/] = E[W/]+> Ay
J<i

Blunt et al. (2015), Choo et al. (2018), Pathak et al. (2021)



Another approach: Variance minimization ‘

State-specific variance minimization for excited states?

2 (VI —wPV)

i (Wv)

In the limit of exact wave functions, variance must have minimal

Often, optimization escapes target state, finding little or no barrier
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— Energy minimization safer and more robust

Cuzzocrea, Scemama, Briels, Moroni, Filippi, JCTC (2020)



Geometry optimization in ground and excited states

So far, efficient variational optimization 4+ compact wave functions

— Chemically accurate excitation energies

What about structural optimization?
E= /dR Ei(R)P(R) = (E.) — F = —0,(EL)

In variational Monte Carlo, P = W2

OV

F =~ (0 +2(EL— E)5)

— VMC forces are ready for use!



Relax geometry in the excited state‘

f
AE\'urlicnl

Eadiabatic

>0

Need of consistent wave functions for different geometries/states!
Generate “smart” expansions of similar quality

... for all geometries/states

Dash, Moroni, Filippi, Scemama, JCTC (2021)




Excited-state relaxation: some examples

Optimal excited-state geometries: MAD on bond lengths
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In progress: using QMC forces for molecular dynamics

Exploring strategies to follow dynamics in excited state

— Reducing impact of noise

— Improving convergence of variational optimization

Ground state PES ——

Excited state PES ——
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Cuzzocrea, Briels, Filippi (2023)
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TREX flagship code CHAMP-EU

These and other developments in CHAMP code @5 [HAMP
— Employing | TREXIO | and high-performance | QMCkI | libraries

We have very efficient algorithms for:

— Computation of observables — derivatives of the energy

— Variational and structural optimization for molecules+solids

— Treatment of excited states

https://github.com /filippi-claudia/champ



Robust QMC protocol for modeling ground and excited states

— Efficient computation of accurate energy derivatives

— QMC “internally consistent” method

with geometries and wave functions determined in QMC
— Automated generation of accurate/compact wave functions
— Balanced description of multiple states

— Accurate vertical excitations and excited-state geometries

— We can handle “difficult” systems and excitations, e.g. doubles

All these (and more) developments in TREX CHAMP code!
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