
Container

Nico Mittenzwey
Kai Löhnig



09/11/20212

Why should YOU use Containers?

Users:

Ease the setup and running of your applications

Ease the portability of your applications

Allow reproducibility by others

• Developers:

• Ease "DevOps" 

• Compile your code for different operation 
systems and versions

Caontainer Introduction

https://unsplash.com/photos/NdFREMS5P08



09/11/20213

Rationale

https://en.wikipedia.org/wiki/Usage_share_of_operating_systems#/media/File:Operating_systems_used_on_top_500_supercomputers.svg

Your supercomputer most likely uses Linux

Linux distributions and versions differ

RHEL7 vs RHEL8

SUSE

Ubuntu

System libraries and their versions differ

LibC

Math Libraries

Python

-> Using and moving applications on multiple systems can be challenging

Operating Systems of TOP500 Supercomputers



09/11/20214

Solution: Have a portable, easily shareable, artifact

Containers are an intelligent way to package an application

Including all needed dependencies

Including all needed configurations

Isolated environment

Shareable either via a repository or as one file
• https://hub.docker.com/search?q=QMCPACK

Rationale

https://unsplash.com/photos/tjX_sniNzgQ

https://hub.docker.com/search?q=QMCPACK​


09/11/20215

Machines vs. Virtual Maschines vs. Containers

Hardware

Hypervisor

Hypervisor Kernel

Guest
OS

Kernel

Bins/Libs

App 1

Guest
OS

Kernel

Bins/Libs

App 2

Guest
OS

Kernel

Bins/Libs

App 3

Hardware

Operating System

Kernel

Container Engine

Bins/Libs

App 1

Bins/Libs

App 2

Bins/Libs

App 3

Virtual Machines Containers

Hardware

Operating System

Kernel

Bins/Libs

App 1 App 2 App 3

Traditional Machine

• Pro:
• Easy to setup

• Cons:
• Apps may depend on 

different libs
• Not portable

• Pro:
• Separation
• Portable but huge

• Cons:
• Performance impact
• Hard to setup

• Pro:
• Separation
• Portable
• Easy to setup



09/11/20216

Container Software Platforms

• Docker (www.docker.com)
• most used platform with lots of prebuild application containers on https://hub.docker.com/
• needs root access to install / hard to secure for a multi-user system
• needs a deamon running on the node

• Pod Manager "Podman" (https://www.podman.io)
• developed as an alternative to Docker
• no root access required
• compatible to Docker command line commands

• Singularity (https://sylabs.io/singularity/)
• developed as an alternative to Docker for HPC systems
• no root access required
• can use Docker containers
• supports HPC interconnects natively
• recently introduced a "Pro" version with enterprise support

https://pixabay.com/photos/container-ship-container-ship-port-2786842/

http://www.docker.com
https://hub.docker.com/
https://www.podman.io
https://sylabs.io/singularity/


09/11/20217

Image

act as a set of instructions to build a 
Docker container

like a class in programming language 
or blueprint in real world

contains application code, libraries, 
tools

Images and Container

Container

an independet instance of an image

like an object in programming
language or manifactured object from 
blueprint



09/11/20218

Image - Basic Commands

docker pull – downloads images from repository (default hub.docker.com)

docker image ls or docker images - shows images in local workspace

docker image rm or docker rmi - delete images in local workspace



09/11/20219

Image – Example Build/Compile Image

build_slurm_el8.dockerfile



09/11/202110

Image - Basic Commands 2

docker build PATH – builds an image from a dockerfile

--file or -f – sets name of dockerfile (default: Dockerfile)

--tag or -t – simple tag for the image (default latest)

--build-arg – paramater which can be passed into the container

Example: docker build --build-arg "BASIC_IMAGE=almalinux:8" --build-arg 
"BASIC_IMAGE=my_compile_script.sh" -f ./build_slurm_el8.dockerfile -t alma_slurm
.



09/11/202111

Image – Example Build/Compile Image

my_compile_script.sh



09/11/202112

Container - Basic Commands

docker run IMAGE – creates and executes a container from an image

--name – set name for container

--terminal --interactive or -t -i short -ti – command line access inside the container

--entrypoint – overwrite default entrypoint (main routine) of the image

--volume or -v – mounts a directory ("volume") from host into container

--rm – removes container after exit

--env or -e – set environment variables

Example: docker run –v /tmp/slurm:/build/slurm -e "SLURMVERSION=20.11.8" --name 
build_slurm alma_slurm

Example debugging: docker run –ti –entrypoint "/bin/bash" –v /tmp/slurm:/build/slurm -
-name build_slurm alma_slurm



09/11/202113

Container - Basic Commands

docker container ls - shows running container

-a – shows all container

docker container rm or docker rm – removes container in local workspace



09/11/202114

Container - Basic Commands

docker create IMAGE – creates container from image

docker start CONTAINER– starts stopped or created container

docker attach CONTAINER– connects to running container

docker stop CONTAINER– stops container

docker kill CONTAINER– forces the container to stop



09/11/202115

Image – Build Application Image

Example Folding At Home: https://github.com/linuxserver/docker-
foldingathome/blob/master/Dockerfile



09/11/202116

Image - Build Application Image



09/11/202117

Container – Import / Export

docker save IMAGE – saves everything needed to build a container from scratch

docker load IMAGE – loads image from file created with "save" - no hub needed

docker export CONTAINER– export a container including its current file system into a file

docker import CONTAINER– imports container including its file system from file



09/11/202118

Container - Basic Commands

Questions?




