
1

Todd Gamblin

Advanced Technology Office
Lawrence Livermore National Laboratory

Intro to Spack
TREX Hackathon
November 12, 2021

2

HPC simulations rely on icebergs of dependency libraries

71 packages
188 dependency edges

LBANN: Neural Nets for
HPC

MFEM:
Higher-order finite

elements
31 packages,

69 dependency edges

98 packages
248 dependency

edges

MuMMI: Cancer/drug interaction modeling
Integrates MD , HPC scheduling, ML

3

• 1:1 relationship between source code and binary (per platform)
– Good for reproducibility (e.g., Debian)
– Bad for performance optimization

•Binaries should be as portable as possible
– What most distributions do
– Again, bad for performance

• Toolchain is the same across the ecosystem
– One compiler, one set of runtime libraries
– Or, no compiler (for interpreted languages)

Some fairly common (but questionable) assumptions
made by package managers (conda, pip, apt, etc.)

Outside these boundaries, users are typically on their own

4

• Code is typically distributed as source
– With exception of vendor libraries, compilers

• Often build many variants of the same package
– Developers’ builds may be very different
– Many first-time builds when machines are new

• Code is optimized for the processor and GPU
– Must make effective use of the hardware
– Can make 10-100x perf difference

• Rely heavily on system packages
– Need to use optimized libraries that come with machines
– Need to use host GPU libraries and network

• Multi-language
– C, C++, Fortran, Python, others

all in the same ecosystem

High Performance Computing (HPC)
violates many of these assumptions

Oak Ridge National
Lab

Power9 / NVIDIA

Summ
it

Lawrence
Berkeley National

Lab
AMD Zen / NVIDIA

NERSC-9Perlmutte
r

Oak Ridge National
Lab

AMD Zen / Radeon
Lawrence Livermore

National Lab
AMD Zen / Radeon

Argonne National
Lab

Intel Xeon / Xe

Auror
a

Curre
nt

Upcomin
g

Some
Supercomputers

RIKEN
Fujitsu/ARM a64fx

Fugak
u

5

• Spack automates the build and installation of scientific software

• Packages are parameterized, so that users can easily tweak and tune configuration

• Ease of use of mainstream tools, with flexibility needed for HPC

• In addition to CLI, Spack also:
• Generates (but does not require) modules
• Allows conda/virtualenv-like environments
• Provides many devops features (CI, container generation, more)

$ spack install hdf5@1.10.5
$ spack install hdf5@1.10.5 %clang@6.0
$ spack install hdf5@1.10.5 +threadssafe
$ spack install hdf5@1.10.5 cppflags="-O3 –g3"
$ spack install hdf5@1.10.5 target=haswell
$ spack install hdf5@1.10.5 +mpi ^mpich@3.2

$ git clone https://github.com/spack/spack
$ spack install hdf5

No installation required: clone
and go

Simple syntax enables complex installs

github.com/spack/spack

Spack enables Software distribution for HPC

6

Spack is used on the fastest supercomputers in the world

Includes the current top 3:
1. Fugaku at RIKEN (Fujitsu ARM a64fx)
2. Summit at ORNL (Power9/Volta)
3. Sierra at LLNL (Power9/Volta)

7

• Spack will be used to build software for the three
upcoming U.S. exascale systems

• ECP has built the Extreme Scale Scientific Software Stack
(E4S) with Spack – more at https://e4s.io

• Spack will be integral to upcoming ECP testing efforts.

Spack is critical for ECP’s mission to create a
robust, capable exascale software ecosystem.

https://e4s.io

Spack is the most depended-upon
project in ECP

https://e4s.io/

8

The Spack community continues to grow! 5,900+ software packages
900+ contributors

Package contribution rate
increased in 2020

Broke 4,600 monthly active users on docs site
in October 2021

Monthly active users

9

One month of Spack development is pretty busy!

10

• Each expression is a spec for a particular configuration
– Each clause adds a constraint to the spec
– Constraints are optional – specify only what you need.
– Customize install on the command line!

• Spec syntax is recursive
– Full control over the combinatorial build space

Spack provides a spec syntax to describe customized installations

$ spack install mpileaks unconstrained
$ spack install mpileaks@3.3 @ custom version
$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option
$ spack install mpileaks@3.3 cppflags="-O3 –g3" set compiler flags
$ spack install mpileaks@3.3 target=zen2 set target microarchitecture
$ spack install mpileaks@3.3 ^mpich@3.2 %gcc@4.9.3 ^ dependency information

11

Spack packages are templates
They use a simple Python DSL to define how to build

Metadata at the class level

Versions

Install logic
in instance methods

Dependencies
(same spec syntax)

Not shown: patches, resources, conflicts,
other directives.

from spack import *

class Kripke(CMakePackage):
 """Kripke is a simple, scalable, 3D Sn deterministic particle
 transport proxy/mini app.
 """

 homepage = "https://computation.llnl.gov/projects/co-design/kripke"
 url = "https://computation.llnl.gov/projects/co-design/download/kripke-openmp-1.1.tar.gz"

 version(‘1.2.3’, sha256='3f7f2eef0d1ba5825780d626741eb0b3f026a096048d7ec4794d2a7dfbe2b8a6’)
 version(‘1.2.2’, sha256='eaf9ddf562416974157b34d00c3a1c880fc5296fce2aa2efa039a86e0976f3a3’)
 version('1.1’, sha256='232d74072fc7b848fa2adc8a1bc839ae8fb5f96d50224186601f55554a25f64a’)

 variant('mpi', default=True, description='Build with MPI.’)
 variant('openmp', default=True, description='Build with OpenMP enabled.’)

 depends_on('mpi', when='+mpi’)
 depends_on('cmake@3.0:', type='build’)

 def cmake_args(self):
 return [
 '-DENABLE_OPENMP=%s’ % ('+openmp’ in self.spec),
 '-DENABLE_MPI=%s' % ('+mpi’ in self.spec),
]

 def install(self, spec, prefix):
 # Kripke does not provide install target, so we have to copy
 # things into place.
 mkdirp(prefix.bin)
 install('../spack-build/kripke', prefix.bin)

Base package
(CMake support)

Variants (build options)

Don’t typically need install() for
CMakePackage, but we can work
around codes that don’t have it.

12

cuda is a variant (build
option)
cuda_arch is only present
if cuda is enabled

dependency on cuda, but
only
if cuda is enabled

Spack DSL allows declarative specification of complex constraints

constraints on cuda
version

compiler support for
x86_64
and ppc64le

CudaPackage: a mix-in for packages that
use CUDA

There is a lot of expressivity in this DSL.

13

Concretization fills in missing configuration details
when the user is not explicit.

mpileaks ^callpath@1.0+debug ^libelf@0.8.11 User input: abstract spec with some constraints

Concrete spec is fully constrained
and can be passed to install.

Abstract, normalized spec
with some dependencies.

N
orm

alize

Concretize Store

spec:
- mpileaks:
 arch: linux-x86_64
 compiler:
 name: gcc
 version: 4.9.2
 dependencies:
 adept-utils: kszrtkpbzac3ss2ixcjkcorlaybnptp4
 callpath: bah5f4h4d2n47mgycej2mtrnrivvxy77
 mpich: aa4ar6ifj23yijqmdabeakpejcli72t3
 hash: 33hjjhxi7p6gyzn5ptgyes7sghyprujh
 variants: {}
 version: '1.0'
- adept-utils:
 arch: linux-x86_64
 compiler:
 name: gcc
 version: 4.9.2
 dependencies:
 boost: teesjv7ehpe5ksspjim5dk43a7qnowlq
 mpich: aa4ar6ifj23yijqmdabeakpejcli72t3
 hash: kszrtkpbzac3ss2ixcjkcorlaybnptp4
 variants: {}
 version: 1.0.1
- boost:
 arch: linux-x86_64
 compiler:
 name: gcc
 version: 4.9.2
 dependencies: {}
 hash: teesjv7ehpe5ksspjim5dk43a7qnowlq
 variants: {}
 version: 1.59.0
...

spec.yaml

Detailed provenance is stored
with the installed package

14

opt
└── spack
 ├── darwin-mojave-skylake
 │ └── clang-10.0.0-apple
 │ ├── bzip2-1.0.8-hc4sm4vuzpm4znmvrfzri4ow2mkphe2e
 │ ├── python-3.7.6-daqqpssxb6qbfrztsezkmhus3xoflbsy
 │ ├── sqlite-3.30.1-u64v26igxvxyn23hysmklfums6tgjv5r
 │ ├── xz-5.2.4-u5eawkvaoc7vonabe6nndkcfwuv233cj
 │ └── zlib-1.2.11-x46q4wm46ay4pltriijbgizxjrhbaka6
 ├── darwin-mojave-x86_64
 │ └── clang-10.0.0-apple
 │ └── coreutils-8.29-pl2kcytejqcys5dzecfrtjqxfdssvnob

▪ Each unique dependency graph is a
unique configuration.

▪ Each configuration in a unique directory.
— Multiple configurations of the same

package can coexist.

▪ Hash of entire directed acyclic graph
(DAG) is appended to each prefix.

▪ Installed packages automatically find
dependencies
— Spack embeds RPATHs in binaries.
— No need to use modules or set

LD_LIBRARY_PATH
— Things work the way you built them

Spack handles combinatorial software complexity

Installation Layout

Dependency DAG

opt
└── spack
 ├── darwin-mojave-skylake
 │ └── clang-10.0.0-apple
 │ ├── bzip2-1.0.8-hc4sm4vuzpm4znmvrfzri4ow2mkphe2e
 │ ├── python-3.7.6-daqqpssxb6qbfrztsezkmhus3xoflbsy
 │ ├── sqlite-3.30.1-u64v26igxvxyn23hysmklfums6tgjv5r
 │ ├── xz-5.2.4-u5eawkvaoc7vonabe6nndkcfwuv233cj
 │ └── zlib-1.2.11-x46q4wm46ay4pltriijbgizxjrhbaka6
 ├── darwin-mojave-x86_64
 │ └── clang-10.0.0-apple
 │ └── coreutils-8.29-pl2kcytejqcys5dzecfrtjqxfdssvnob

H
ash

15

• spack.yaml describes project requirements

• spack.lock describes exactly what versions/configurations were
installed, allows them to be reproduced.

• Can also be used to maintain configuration together with Spack
packages.
– E.g., versioning your own local software stack with consistent

compilers/MPI implementations
– Allows developers and site support engineers to easily version

Spack configurations in a repository

Spack environments enable users to build customized stacks
from an abstract description

Simple spack.yaml
file

install
build

project
spack.yaml file with
names of required

dependencies

Lockfile describes
exact versions installed

Dependency
packages

Concrete spack.lock file (generated)

16

Environments have enabled us to add build many features to
support developer workflows

Automatically find and configure external packages on the system

spack.yaml configurationpackage.py

spack external find

spack containerize
Turn environments into container build recipes

spack.yaml

.gitlab-ci.yml CI pipeline

Automatically generate parallel build pipelines
(more on this later)

spack ci

class Libsigsegv(AutotoolsPackage, GNUMirrorPackage):
 """GNU libsigsegv is a library for handling page faults in user mode."""

 # ... spack package contents ...

 extra_install_tests = ‘tests/.libs’

 def test(self):
 data_dir = self.test_suite.current_test_data_dir
 smoke_test_c = data_dir.join(‘smoke_test.c’)

 self.run_test(
 'cc’, [
 '-I%s' % self.prefix.include,
 '-L%s' % self.prefix.lib, '-lsigsegv’,
 smoke_test_c,
 '-o', 'smoke_test'
]
 purpose='check linking’)

 self.run_test(
 ‘smoke_test’, [], data_dir.join('smoke_test.out’),
 purpose=‘run built smoke test’)

 self.run_test('sigsegv1': ['Test passed’], purpose='check sigsegv1 output’)
 self.run_test('sigsegv2': ['Test passed’], purpose='check sigsegv2 output’)

spack test
Packages know how to run their own test suites

package.py

17

E4S is ECP’s curated, Spack-based software distribution

• E4S is just a set of Spack packages
– 60+ packages (297 including dependencies)
– Growing to include all of ST and more

• Users can install E4S packages:
– In their home directory
– In a container

• Facilities can install E4S packages:
– On bare metal
– In a container

• Users and facilities can choose parts they want
– spack install only the packages you want
– Or just edit the list of packages (and configurations) you

want in a spack.yaml file Actual E4S manifest (spack.yaml) for OLCF Ascent

More on E4S at https://e4s.io

https://e4s.io/

18

E4S team has built a binary cache with over
50,000+ Spack binary packages

• Built for multiple OS’s, architectures

• E4S team is working with ECP projects to
accelerate their build pipelines

• Improved performance of cloud CI for one
project by 10-100x
– Previously, builds took too long for free cloud CI
– Project can now iterate faster using

Spack/E4S binaries

• We are rapidly building out binary build
capabilities for Spack
– Aim to have optimized binaries for most

platforms in Frontier/El Capitan timeframe

https://oaciss.uoregon.edu/e4s/inventory.html

19

• Developer features so far have focused on
single packages (spack dev-build, etc.)

• New spack develop feature enables
development environments
– Work on a code
– Develop multiple packages from its

dependencies
– Easily rebuild with changes

• Builds on spack envirnoments
– Required changes to the installation model for

dev packages
– dev packages don’t change paths with

configuration changes
– Allows devs to iterate on builds quickly

spack develop lets developers work on many packages at once

20

• LLNL Applied ML team needed to deploy
– PyTorch + Kull development environment
– On ppc64le with system MPI

• Before Spack
– Everybody built from scratch
– People wrote scripts and passed them around
– Days were spent trying to debug build differences

• After spack
– Versioned reproducible spack environments in a git repo
– Standard environments in a shared team directory
– Team members can set up a customizable

environment in ~20 minutes.
• Change python version, PyTorch version on the fly
• Leverage binary caches to avoid redundant builds.

c/o Robert
Blake

spack:
 specs:
 - py-horovod
 - py-torch
 - python
 - py-h5py

packages:
 all:
 providers:
 mpi:
 - mvapich2@2.3
 lapack:
 - openblas threads=openmp
 blas:
 - openblas threads=openmp
 buildable: true
 variants: [+cuda cuda_arch=37]
 compiler: [gcc@7.3.0]
 ...
 python:
 version: [3.8.6]
 cudnn:
 version:
 - 8.0.4.30-11.1-linux-x64
 py-torch:
 buildable: true
 variants: +cuda +distributed
 mvapich2:
 externals:
 - spec: mvapich2@2.3.1%gcc@7.3.0
 prefix: /usr/tce/packages/mvapich2/mvapich2-2.3-gcc-7.3.0
 compilers:
 - compiler:
 operating_system: rhel7
 paths:
 cc: /usr/tce/packages/gcc/gcc-7.3.0/bin/gcc
 cxx: /usr/tce/packages/gcc/gcc-7.3.0/bin/g++

spack.yaml file

The AML team has used Spack environments to accelerate
their workflow

We wanted to translate this workflow to larger codes.

21

• Not unlike other LLNL codes, but…

• MARBL is more deeply modular than prior codes
– Designed to support modular physics
– MARBL itself has two hydro options: Miranda & Blast
– Code, build structure both assume that a simulation is

comprised of packages

• Needed a way to simplify modular workflows
– Need to work on several repos at once
– Changes to the code are multiple pull requests

• LLNL doesn’t (likely won’t) use mono-repos
– Issues:

• Managing permissions
• Code timescales
• Independence of teams

• MARBL built MBS: a better poly-repo approach

We have recently introduced some new features to support the
development model of MARBL, an LLNL multi-physics code

22

• Users can now specify a full, 40-char git commit as a version
– Works in environments or on the command line

• This was tricky because we needed a way to compare a commit to a version
– MBS only needs to be able to fetch by commit, not compare
– Packages have conditional logic with versions
– We can compare versions to commits based on tags in a repository

• We developed an internal representation for commit versions
– Lexicographic tuple comparison:

(<version>, "", <commits since prior tag>)

– Comes before any <version>.x
– Allows commits to be compared by distance between versions.

We have added git versioning to Spack

$ spack install zlib @53ce2713117ef2a8ed682d77b944df991c499252

23

• First section is familiar
– List of packages with hashes

• spack.yaml ties the modular MARBL
code together:
– hashes
– parts of exo/build directory

• Some differences:
– Packages in Spack are configurable
– Can set per-package options
– Compiler options, flags are configurable

in Spack environments

• If this is too long, some of this can be
moved to external includes

Using git versioning, we've been able to support MARBL's
developer workflow

Current MARBL
spack.yaml

MP
I

BLAS/LAPA
CK

build
dependenci

es
package

repos

compiler
info

options,
versions/hash

es

external
package

prefs

24

Spack workflow for developer environment

$ git clone ssh://git@rzgitlab.llnl.gov:7999/mapp/mapp
$ cd mapp
$ spack env activate .
$ spack develop marbl@develop
$ spack develop blast@develop
$ spack develop miranda@develop
$ spack develop exo@develop
$ srun –N 2 –n 16 --exclusive spack install

MAPP

MIRANDABLAST EXOMARBL

. .

.

spack.ya
ml

We can find ways
to
shorten this

spack can do multi-node builds

spack.loc
k

Spac
k

25

• Users specify their constraints in spack.yaml
– The rest of configuration is automated by the concretizer
– The concretizer is a constraint solver that reconciles

package requirements with yours
– Details are beyond the scope of this presentation

• If you modify spack.yaml, you can either:
– Run spack install again (this concretizes before installing)
– Run spack concretize –-force to see the

concretized environment before installing (shown at right)

• spack.lock contains all the decisions the concretizer made:
– Versions
– Compilers, compiler versions
– Variant values
– Optional dependencies
– Target architecture

• Open question: how best to manage spack.lock files

Spack generates a spack.lock file that enables you to reproduce
the environment

Fully concretized MARBL
environment

26

• spack ci enables any environment to be turned
into a build pipeline

• Pipeline generates a .gitlab-ci.yml file from
spack.lock

• Pipelines can be used just to build, or to
generate relocatable binary packages
– Binary packages can be used to keep the same

build from running twice

• Same repository used for spack.yaml can
generate pipelines for project

Spack environments are the foundation of Spack CI

spack.ya
ml

Parallel GitLab build
pipeline

27

We have expanded our CI builds to trigger on pull requests, allowing us to do
CI in the cloud for LLNL open source projects

spack ci

Spack Contributions
on GitHub

spack.yaml
configuration

gitlab.spack.io

GitLab CI builds (changed) packages
• On every pull request
• On every release branch
• Different compilers (Intel soon!)

• New security model supports untrusted contributions from
forks
– Sandboxed build caches for test builds
– Authoritative builds on mainline only after approved merge

x86_64 and aarch64
pipelines in AWS

ppc64le pipelines at
U. Oregon

Pipelines at LLNL
(new)

28

Future CI directions focus on scalability and testing

• Scaling tests up to handle every PR has been very difficult
– Driven by GitLab
– Using Kubernetes builders
– Using a cluster at U. Oregon

• Concretization of large environments was slowing turnaround
– 55 min to concretize E4S environment (each spec separately)
– Brought this down to 2.5 min with parallelization and caching

• Amazon and E4S/UO team helping to pinpoint errors

• We are now doing about 100,000 builds/month

• Once we have a stable, rolling release of spack develop branch,
we’ll make the build cache public
– Rolling binaries for develop
– Long-lived snapshots for each release

http://stats.e4s.io

29

Spack’s model lowers the maintenance burden
of optimized software stacks

Traditional OS
package
manager Recipe per

package configuration
(need rewrites for new

systems)

Portable
(unoptimized)

x86_64 binaries

One software
stack

upgraded over
time

Build
farm

Parameterized recipe
per package

(Same recipe evolves for all
targets)

Build farm /
CI

Optimized
Graviton2
binaries
Optimized
Skylake
binaries

Optimized
GPU

binaries

Many
software
stacks

Built for
specific:
Systems

Compilers
OS’s
MPIs
etc.

Spac
k

Users/developers can also build directly from
source

30

Major new features:
1. New Concretizer is now default
2. Binary bootstrapping enables us to get up and running fast
3. spack install --reuse aggressively reuses installed packages
4. Improved error messages
5. Conditional variants for more expressive packages
6. Git commit versioning
7. Overrides for default config directories
8. Improvements to spack containerize
9. New commands for querying packages and tests by tag

▪ 5,969 packages (920 added since 0.16)

▪ Full release notes: https://github.com/spack/spack/releases/tag/v0.17.0

Spack v0.17.0 was just released!

https://github.com/spack/spack/releases/tag/v0.17.0

31

High level view of a Spack package build

• new versions
• new

dependencies
• new constraints

package.py repository

local preferences config
packages.yaml

yaml

local environment config
spack.yaml

yaml

admins
,
users
user
s

Command line constraints
spack install hdf5@1.12.0 +debug

Contributor
s

default config
packages.yaml

yamlspack
developer
s

user
s

concretize
r

Concrete spec is
fully constrained
and can be built.

32

• Search over a solution space:
– Possible dependency graphs (nodes, edges)
– Assignment of node and edge attributes

• Version
• Dependency, dependency type
• Compiler, compiler version
• Target
• Compiler, compiler version

• Subject to validity constraints:
– Version requirements
– Target/compiler compatibility
– Virtual providers

• Optimization picks “best” among valid solutions:
– Most recent versions
– Preferred variant values
– Preferred compilers that support best targets (e.g., AVX-512)
– Minimize number of builds

Package solving is combinatorial search with
constraints and optimization This problem is

NP-hard!

33

• New concretizer leverages Clingo (see potassco.org)

• Clingo is an Answer Set Programming (ASP) solver
– ASP looks like Prolog; leverages SAT solvers for speed/correctness
– ASP program has 2 parts:

1. Large list of facts generated from our package repositories and config
– 20,000 – 30,000 facts is typical – includes dependencies, options, etc.

2. Small logic program (~800 lines), including constraints and optimization criteria

• New algorithm on the Spack side is conceptually simpler:
– Generate facts for all possible dependencies, send to logic program
– Optimization criteria express preferences more clearly
– Build a DAG from the results

• New concretizer solves many specs that current concretizer can’t
– Backtracking is a huge win – many issues resolved
– Currently requires user to install clingo with Spack
– Solver will be automatically installed from public binaries in 0.17.0

The new concretizer is now default in 0.17

Some facts for the HDF5 package

34

• Dependencies and other constraints within
SDKs could get very messy

• The new concretizer removes the need for
some of the more painful constructs

• Also allows for new constructs, like
specializing dependencies
– When conditions are now much more

general
– Can be solved together with other

constraints.

The new concretizer enables significant simplifications
to packages, particularly complex constraints in SDKs

depends_on('foo+A+B', when='+a+b')
depends_on('foo+A~B', when='+a~b')
depends_on('foo~A+B', when='~a+b')
depends_on('foo~A~B', when='~a~b')

depends_on('foo')
depends_on('foo+A', when='+a')
depends_on('foo+B', when='+b’)

Before

After

depends_on('blas’)
depends_on(
 'openblas threads=openmp’, when='^openblas’
)

Specializing a virtual did not previously work:

In some cases we needed cross-products of
dependency options:

Conditional variants were previously not possible:

variant("cuda_arch", when="+cuda")

35

With and without reuse optimization

Pure hash-based reuse: all
misses

With reuse: 16 packages were actually
acceptable

Note the
bifurcated
optimization
criteria

36

Four of the top six most wanted features in Spack
were tied to the new concretizer

• Complexity of packages in Spack is increasing
– many more package solves require backtracking

than a year ago
– Many variants, conditional dependencies, special

compiler requirements

• More aggressive reuse of existing installs
requires better dependency resolution
– Need to be able to analyze how to configure the

build to work with installed packages

• Separate resolution of build dependencies also
requires a more sophisticated solver
– Makes the solve even more combinatorial
– Needed to support mixed compilers, version

conflicts between different package’s build
requirements

Part of milestone STED09-8

37

Four of the top six most wanted features in Spack
are tied to the new concretizer

Part of milestone STED09-8

Done for
0.17

Nearly done for
0.17

Starte
d

38

▪ There are lots of ways to get involved!
— Contribute packages, documentation, or features at github.com/spack/spack
— Contribute your configurations to github.com/spack/spack-configs

▪ Talk to us!
— You’re already on our Slack channel (spackpm.herokuapp.com)
— Join our Google Group (see GitHub repo for info)
— Submit GitHub issues and pull requests!

Join the Spack community!

@spackpm

We hope to make distributing & using HPC software easy!

github.com/spack/spack

Star us on GitHub! Follow us on Twitter!

39

Approved for public release

